**KURDISTAN REGION -IRAQ** IN THE NAME OF GOD HIGH COMMITTEE FOR GENERAL EXAMINATION General Examinations for Preparatory SN: 3000001 School 12<sup>th</sup> stage (Scientific 2020-2021)

Name.....

**Subject:** Physics **First Attempt** Time: 3.30Hours 71054

| Choose the right answers for the following questions: (two marks for each question)                                                                                                                                                                                                                  |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|
| <ol> <li>Determine the change in gravitational force between two masses if the distance between two<br/>masses is doubled:</li> </ol>                                                                                                                                                                |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |  |  |  |  |
| A) becomes four times                                                                                                                                                                                                                                                                                | B) becomes three times                                                                                                         | <b>C</b> ) becomes $\frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>D)</b> does not changing                                  |  |  |  |  |
| <ul> <li>2. A point on rim of CD in a computer has tangential speed of 1.8 m/s, If radius of CD is 0.06 m what is the tangential speed of a point on this CD that is 0.03 m from axis of rotation?</li> <li>A) 30 m/s</li> <li>B) 0.03 m/s</li> <li>C) 0.9 m/s</li> <li>D) 3.6 m/s</li> </ul>        |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |  |  |  |  |
| <ul><li><b>3.</b> What is the length of a simple</li><li><b>A)</b> 0.9 m</li></ul>                                                                                                                                                                                                                   | e pendulum, its frequency is<br><b>B)</b> 4.5 m                                                                                | 0.525 Hz ,If a <sub>g</sub> =9.81 m/s² ?<br><b>C)</b> 1.25 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>D)</b> 3.5 m                                              |  |  |  |  |
| <ul> <li><b>4.</b> All points on a disk rotating an <b>A</b>) tangential speed <b>B</b></li> </ul>                                                                                                                                                                                                   | round a fixed axis, have the<br>angular speed <b>C)</b> tang                                                                   | same:<br>jential acceleration <b>D)</b> both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | h (A) and(C)are correct                                      |  |  |  |  |
| <b>5.</b> When a wheel is rotating through an angle of 35°, a point on the circumference travels through an arc length of 2.5 m. What is the radius of the wheel?                                                                                                                                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |  |  |  |  |
| <b>A)</b> 1.4 m                                                                                                                                                                                                                                                                                      | <b>B)</b> 4.1 m                                                                                                                | <b>C)</b> 36 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>D)</b> 22.5 m                                             |  |  |  |  |
| <ul> <li>6. A bicyclist rides along a circular track. If the bicyclist travels around exactly half the track in 10 s, what is his average angular speed?</li> <li>A) 0.214 rad/a</li> </ul>                                                                                                          |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |  |  |  |  |
| <ul> <li>7. If a spinning amusement-park<br/>of a person standing 12 m fr<br/>A) 17.28 m/s<sup>2</sup></li> </ul>                                                                                                                                                                                    | ride has an angular speed<br>from the centre of the ride?<br><b>B)</b> 1.728 m/s <sup>2</sup>                                  | of I.2 rad/s, what is the cent<br>C) 172 m/s <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ripetal acceleration<br>D) 1282 m/s <sup>2</sup>             |  |  |  |  |
| <ul> <li>8. Which rotational quantity is equivalent to mass in transitional motion?</li> <li>A) torque(τ)</li> <li>B) angular momentum(L)</li> <li>C) moment of inertia(I)</li> <li>D) force(F)</li> </ul>                                                                                           |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |  |  |  |  |
| <ul> <li>9. A bar magnet is positioned new What is the direction of the moved to the left:</li> <li>A) from left to right</li> <li>C) in two opposite direction</li> </ul>                                                                                                                           | ear a coil of wire, as shown<br>current in the resistor <b>R</b> wh<br><b>B)</b> from right to b<br>ns <b>D)</b> All Answers a | in figure.<br>Then the magnet is for the magnet is the magn | $\vec{v}$                                                    |  |  |  |  |
| <ul><li>10. When a part of a sound wave</li><li>A) speed</li></ul>                                                                                                                                                                                                                                   | ve travels from air into water<br>B) frequency                                                                                 | , which property of the wave <b>C)</b> wavelength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | remains unchanged?<br>D) amplitude                           |  |  |  |  |
| <ul><li>11. Which of the following is the θ is the angle between the A) B sin θ</li></ul>                                                                                                                                                                                                            | e component of the magnetic<br>e direction magnetic field an<br><b>B)</b> B cos θ                                              | c field perpendicular to the pl<br>d the normal to the plane of f<br><b>C)</b> B cos θ tan θ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ane of the loop.<br>the loop?<br><b>D)</b> AB tan θ          |  |  |  |  |
| <ul> <li>12. A parked ambulance emits a inside another car moving wi sound in air is 340 m/s.)</li> </ul>                                                                                                                                                                                            | a sound of frequency 1200 l<br>th a velocity of 72 km/h. wh<br>1000 Hz <b>B)</b> 1129.4 Hz                                     | Hz. What frequency is detect<br>en he move towards the amb<br><b>C)</b> 1270.6 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ed by an observer<br>pulance. (Speed of<br><b>D)</b> 1700 Hz |  |  |  |  |
| <b>13.</b> A pipe that is open at both ends has a fundamental frequency of 456 Hz when the speed of sound in air is 331 m/s. What is the fundamental frequency of this pipe when the speed of sound in air is increased to 367 m/s as a result of increasing the temperature of the air in the pipe? |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |  |  |  |  |
| <b>A)</b> 250 Hz <b>B)</b>                                                                                                                                                                                                                                                                           | 507 Hz                                                                                                                         | <b>C)</b> 750 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>D)</b> 1000 Hz                                            |  |  |  |  |

- **14.** What happens to the wavelength of a wave on a string when the frequency is doubled? What happens to the speed of the wave?
  - A) The wavelength is halved and the speed doubles
  - B) The wavelength doubles and the speed double too
  - C) The wavelength is halved and the wave speed remains the same
  - D) The wavelength is doubled and the wave speed remains the same
- **15.** The unknown quantity in the corresponding table is equal: A) -0.25 rad/s<sup>2</sup> **B)** -0.5 rad/s<sup>2</sup> **C)** -1.07 rad/s<sup>2</sup> **D)** -2 rad/s<sup>2</sup>?
- 16. A uniform 4.14 m long horizontal beam (b) that weighs 392.9 N is attached to a wall by a pin connection that allows the beam to rotate. Its far end is supported by a cable that makes an angle of 53° with the horizontal, and a 560 N person (P)is standing 1.5 m from the pin, Find the tension force  $(F_T)$ , of the cable (If beam is in complete equilibrium) as shown in figure? **A)** 500 N **B)** 400 N **C)** 663 N
- 17. What is the restoring force of the (mass-spring) system: A) Elastic force **B)** weight **C)** frictional force
- 18. Which of the following features of a given pendulum changes when the pendulum is moved from Earth's surface to the Moon? A) Its mass **B)** Its length
- **19.** A mass attached to a spring vibrates back and forth, about equilibrium position, at maximum displacement, the restoring force and the....:
  - A) speed reaches a maximum
  - C) acceleration reaches a maximum
- 20. If a pendulum clock is running slow, what must be done to correct the time? A) make the pendulum shorter
  - C) increasing the mass
- **21.** A 0.77 kg mass attached to a vertical spring stretches the spring 0.3 m. What is the spring constant? A) 0.25 N/m **B)** 2.5 N/m
- **22.** Which of the following is a correct interpretation of the expression  $a_g = g = G \frac{m_E}{r^2}$ ?
  - A) Gravitational field strength changes with an object's distance from Earth.
  - **B**) Free- fall acceleration changes with an object's distance from Earth.
  - C) Free- fall acceleration is independent of the falling object's mass.
  - D) All of the above are correct interpretations.
- 23. The angle between the direction of centripetal force  $\overline{F_c}$  and the direction of centripetal acceleration  $\overline{a_c}$  is equal to ?

**B)** 45°

- **A)** 0° 24. What is the longest wave length of a standing wave of in pipe closed at one end, its length is L? **B**)  $\lambda_1 = 2L$ **A**)  $\lambda_1 = L$
- **25.** The Doppler effect occurs in all but which of the following situations: A) A source of sound moves toward a listener
  - C) A listener and a source of the sound remain at rest with respect to each other
  - D) A listener and a source of the sound move toward or away from each other

 $\alpha_{avg}$  $\Delta t$ Δω -1.2 rev/s7 s ? 4.14 m R 1.5 m 53 axis of rotation 392.9 N 560 N **D)** 952.9 N D) both (B) and (C) are correct **C)** The equilibrium position **D)** The restoring force B) speed reaches zero D) acceleration reaches zero B) make the pendulum taller D) increasing the amplitude C) 20 N/m **D)** 25 N/m **C)** 90° **D)** 180° **C**)  $\lambda_1 = 3L$ **D**)  $\lambda_1 = 4L$ B) A listener moves toward a source of sound 0001

| <ul> <li>26. A straight segment of wir a magnetic field of 0.6 T</li> <li>A) 0.075 N</li> </ul>                                       | re has length of 25 cm and c<br>, what is the magnitude of t<br><b>B)</b> 7.5N                                                 | arries a current of 5 A, If the magnetic force on this s<br><b>C)</b> 0.75 N                                                       | he wire is perpendicular to segment of the wire?<br><b>D)</b> 75 N                                                      | <ul><li>40. The galvanometer can be convert</li><li>A) very high resistance in series</li><li>C) very low resistance in parallel</li></ul>      | ed to a voltmeter by con<br>B) very high res<br>D) very low resis              |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| <b>27.</b> A uniform disk of mass 5 momentum of the dis                                                                               | kg and radius 0.1 m rotating<br>k?                                                                                             | g at angular speed of 20 ra                                                                                                        | ad/s calculate its angular                                                                                              | <b>41.</b> If an object is in the state of rotation<br><b>A</b> ) $\sum \tau = 0$<br><b>C</b> ) its angular speed constant                      | onal equilibrium which of<br>B)<br>D)                                          |
| <b>28.</b> A baseball coach shouts coach is $3.14 \times 10^{-3}$ W, w                                                                | loudly at an umpire standing hat is the decibel level of the                                                                   | g 5 m away. If the sound p<br>sound when it reaches th                                                                             | b) 0.5 kg $\frac{-1}{s}$<br>hower produced by the<br>he umpire?                                                         | <b>42.</b> A disk of mass 0.5 kg and radius (<br>energy of the disk at the instant w                                                            | 0.1 m rolls without slippin<br>when the instantaneous s                        |
| <b>A)</b> 0 dB                                                                                                                        | <b>B)</b> 30 dB                                                                                                                | <b>C)</b> 40 dB                                                                                                                    | <b>D)</b> 70 dB                                                                                                         | <b>A)</b> 0.375 J <b>B)</b> 3.75 .                                                                                                              | J <b>C)</b> 375 J                                                              |
| <ul> <li>29. The magnetic field of sol</li> <li>A) number of turns per</li> <li>C) magnetic permeabilit</li> </ul>                    | enoid depends on which of t<br>unit length<br>ty of the medium (μ)                                                             | the following factors:<br><b>B)</b> amount a current<br><b>D)</b> All the answers are                                              | correct                                                                                                                 | <ul><li>43. What kind of wave does this graph</li><li>A) Transverse wave</li><li>C) electromagnetic wave</li></ul>                              | h represent?<br><b>B)</b> longitudin<br><b>D)</b> radio wav                    |
| <b>30.</b> A pair of adjacent coils h secondary circuit when th interval of 0.0336s.                                                  | as a mutual inductance of 1<br>e current in the primary circ                                                                   | .06 H. Determine the avera<br>uit changes from 0 A to 9.5                                                                          | age emf induced in the<br>5 A in a time                                                                                 | <ul><li>44. Which of the following sound wave</li><li>A) audible waves</li><li>C) ultrasonic waves</li></ul>                                    | es travel faster in the air<br>B) infrason<br>D) All sound                     |
| <b>A)</b> 117 V                                                                                                                       | <b>B)</b> 245 V                                                                                                                | <b>C)</b> -300 V                                                                                                                   | <b>D)</b> 300 V                                                                                                         | <b>45.</b> Which type of interference will ha                                                                                                   | ppen                                                                           |
| <ul><li>31. An electric current traver if the magnitude of the magnitude of the magn) 10 A</li></ul>                                  | s a one loop circular coil of a<br>agnetic field at the center of<br><b>B)</b> 20 A                                            | diameter 50 cm. Calculate<br>the coil is $2\pi \times 10^{-5}$ T<br><b>C)</b> 25 A                                                 | the intensity of the current<br>,[ $\mu_o=4\pi \times 10^{-7} \text{ T.m/A}$ ]<br><b>D</b> ) 30 A                       | When two, pulses meet, (as show<br>A) destructive interference.<br>C) complete destructive interferen                                           | wn in the figure)?<br>B) constructi<br>ce D) no interfe                        |
| <b>32.</b> An air solenoid of length self-induction of solenoid <b>A</b> ) $2 \times 10^{-3}$ H                                       | 10 cm, cross -sectional area<br>[ $\mu_o = 4\pi \times 10^{-7} \text{ T.m/A}$ ]<br><b>B)</b> 5× 10 <sup>-3</sup> H             | 24.88 cm <sup>2</sup> , and 400 turns<br><b>C)</b> 3 × 10 <sup>-5</sup> H                                                          | . Calculate the coefficient of <b>D</b> ) $3 \times 10^{-4}$ H                                                          | <b>46.</b> The combination of an applied for wheel rotating about a fixed axis, the wheel increases from 0 to 12                                | ce and a frictional force<br>The applied force acts<br>rad/s. Then the applied |
| <ul><li>33. In the figure use the mov<br/>of the magnetic force ac</li><li>A) up the page</li></ul>                                   | vement of the positively char<br>cting on it to find the direction                                                             | ged particle and the direct<br>n of the magnetic field<br><b>B)</b> to the right of page                                           | $\overrightarrow{V}$ $\overrightarrow{F}$                                                                               | 65 s, what is the frictional torque<br>A) -11 N.m B) -26.5<br>47. If we increase the length of the pe                                           | ?<br>N.m <b>C)</b> -33 N.m<br>edal arm then the amoun                          |
| C) out of the page                                                                                                                    |                                                                                                                                | D) down the page                                                                                                                   |                                                                                                                         | bicycle will?                                                                                                                                   |                                                                                |
| <ul> <li>34. An alpha particle (q=3.2 strength 2 ×10<sup>-4</sup> T. Wha</li> <li>A) 1.6 × 10<sup>-16</sup> N</li> </ul>              | $\times$ 10 <sup>-19</sup> C) moves at a speed<br>t is the magnitude of the ma<br><b>B)</b> -1.6 $\times$ 10 <sup>-16</sup> N  | of $2.5 \times 10^6$ m/s perpendic<br>gnetic force on the particle<br><b>C)</b> $4.0 \times 10^{-9}$ N                             | ular to a magnetic field of<br>e?<br><b>D)</b> zero                                                                     | <ul> <li>A) Increases</li> <li>B) Decreases</li> <li>48. The machine that converts mechanism</li> <li>A) generator</li> <li>B) motor</li> </ul> | eases C) Reduce to<br>anical energy into electric<br>C) ammeter                |
| <b>35.</b> The rate at which a body                                                                                                   | rotates about an axis?                                                                                                         |                                                                                                                                    |                                                                                                                         | <b>49.</b> Henry (H) = <b>A)</b> Ω. m                                                                                                           | <b>B)</b> Wb. m <sup>2</sup>                                                   |
| <ul> <li>A) angular displacemen</li> <li>C) angular speed (ω)</li> </ul>                                                              | t (Δ <b>θ</b> )                                                                                                                | <ul><li>B) tangential accele</li><li>D) angular accelera</li></ul>                                                                 | eration (a <sub>t</sub> )<br>tion(α)                                                                                    | <b>50.</b> If the motor's coil turns faster ther                                                                                                | <ul> <li>A) The back emf in</li> <li>C) current of the co</li> </ul>           |
| <b>36.</b> The unit of magnetic field                                                                                                 | d B is :                                                                                                                       | - wh -                                                                                                                             |                                                                                                                         |                                                                                                                                                 | -,                                                                             |
| <b>A)</b> Tesla (T)                                                                                                                   | <b>B)</b> $\frac{\mathbf{R}}{\mathbf{A}\cdot\mathbf{m}}$                                                                       | C) $\frac{WD}{m^2}$ D                                                                                                              | ) All the answers are correct                                                                                           |                                                                                                                                                 |                                                                                |
| <ul> <li><b>37.</b> A solid ball with a mass of down a 30° slope. What</li> <li><b>A)</b> 6.727 m/s</li> </ul>                        | of 4.1 kg and a radius of 0.0<br>is the translational speed o<br><b>B)</b> 4.245 m/s                                           | 5 m starts from rest at a he<br>f the ball when it leaves the<br><b>C)</b> 5.29 m/s                                                | eight of 2 m and rolls<br>e incline?<br><b>D)</b> 24 m/s                                                                |                                                                                                                                                 |                                                                                |
| <ul> <li>38. Rapidly inserting the north needle of the galvanometer the left?</li> <li>A) pull the left?</li> <li>C) thrus</li> </ul> | th pole of a bar magnet into<br>er to deflect to the right, wha<br>he north pole of magnet out<br>t the south pole of the magr | a coil of wire connected to<br>at must be done to the nee<br>of the coil <b>B</b> ) let the<br>net into the coil <b>D</b> ) both ( | a galvanometer causes the<br>edle of the galvanometer to<br>e magnet sit at rest in the coil<br>(A) and (C) are correct |                                                                                                                                                 |                                                                                |
| <b>39.</b> At the time of producing number of nodes?                                                                                  | <ul> <li>standing wave in which of th</li> <li>A) vibrating string</li> <li>C) pipes closed at one end</li> </ul>              | e following does number o<br>B) pipes<br>D) All the                                                                                | of antinodes is greater than<br>open of both end<br>e answers are correct                                               |                                                                                                                                                 |                                                                                |

meter by connecting a resistor of...... to the galvanometer very high resistance in parallel very low resistance in series

rium which of the following is true?

**B**) α = 0

**D)** All of the them are correct interpretations

vithout slipping on an inclined plane. What is the total kinetic tantaneous speed of its centre is 1 m/s  $\left[I = \frac{1}{2} \text{ m r}^2\right]$ 

**D)** 3.75 × 10<sup>3</sup> J

B) longitudinal wave D) radio wave

ster in the air?

**B)** infrasonic waves

D) All sound waves travel at the same speed in air

B) constructive interference

D) no interference occur

ctional force produce a constant torque of 36 N.m on a d force acts for 6 s , during this time the angular speed of the applied force is removed, and the wheel comes to rest in

**D)** -3.3 N.m

en the amount of torque applied to moving the front wheel of a

C) Reduce to half

**D**) Does not change

y into electric energy is called:

**D)** microphone

C)  $\frac{\text{wb}}{\text{A}}$ 

**D)** N.m

back emf increases rent of the coil decreases **B)** The back emf decreases **D)** both (A) and(C)are correct



