Kurdistan Region – Iraq SN: 30000001 In the Name of Allah

Subject: Maths Time: 3:30 Hours

High Committee for General Examinations General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Choose the correct option, two marks for each right answer

1. Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.



**2.** Which of the following functions is symmetric with respect to the y - axis?

**A.** 
$$x^2y - x^2 + 3y = 0$$
 **B.**  $y = \sqrt{x-4}$  **C.**  $y = |x+2| - 2$  **D.**  $x^2y - x = 0$ 

$$\mathbf{R} \cdot \mathbf{v} = \sqrt{x-4}$$

$$C.v = |x + 2| - 2$$

**D.** 
$$x^2y - x = 0$$

3. Find the equation of the line that passes through the point (-4,1) and perpendicular to the y - axis . A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0

the 
$$y - axis$$
. **A.**  $x + 4 = 0$ 

**B.** 
$$y - 4x = 0$$

$$I = 0$$

**D.** 
$$y + 3 = 0$$

**4.** Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)

**A.** 
$$\frac{3}{2}$$

A. 
$$\frac{3}{2}$$
 B.  $\frac{-3}{2}$  C.  $\frac{2}{3}$ 

$$C.\frac{2}{3}$$

**D.** 
$$\frac{-2}{3}$$

**5.** Determine the range of the function *f* from the given graph on the right.

$$A = -2, 2$$

$$A.[-2,2]$$
 **B**.  $[-2,1]$ 

$$C.[-1,2]$$

$$\mathbf{D}$$
. [0, 2]



**6.** Use the given graph of the function y = f(x) on the right, to determine the graph of the function y = -f(x-2)



7. Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2, 2]$$

**A.** 
$$[-2,2]$$
 **B.**  $[0,2]$  **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.**  $[-2,0]$ 

**D.** 
$$[-2,0]$$

**8.** If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

**A.** 
$$x^2 - 2x$$
 **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$ 

**B.** 
$$x^2 + 2x$$

C. 
$$x^2 + 2x + 4$$

**D.** 
$$x^2 - 2x + 4$$

**9.** The line y = -4x + 7 passes through which of the following points ?

**A.** 
$$(5,-3)$$
 **B.**  $(-3,5)$  **C.**  $(2,-1)$ 

**B.** 
$$(-3,5)$$

C. 
$$(2, -1)$$

$$\mathbf{D} \cdot (-1,2)$$

**10.**Use the given graph on the right to find the result of  $\lim_{x\to 0^+} f(x)$ the result of  $\lim_{x\to 0^+} f(x)$  **D.** Does not exist.



11. Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....

**12.**The result of 
$$\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$$
 is: **A.** 0 **B.**-1

13. The result of 
$$\lim_{x \to 3^-} \frac{2-x}{x-3}$$
 is: A.  $-\infty$  B.  $+\infty$  C. 0

$$A. -\infty B.$$

**14.**The result of 
$$\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2}$$
 is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$  **D.**  $\frac{1}{9}$ 

$$\frac{1-x}{x+2}$$

$$\mathbf{D}$$
.

**15.** Which of the following functions has no vertical asymptote at 
$$x = 2$$
?

**A.** 
$$f(x) = \frac{x^2 - 4}{(x - 2)^2}$$
 **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$ 

$$\mathbf{B.}\,f(x) =$$

C. 
$$f(x) = \frac{x^2 + x^2}{x^2 - 3x}$$

**D** 
$$f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$$

**16.** Which of the following functions has a removable discontinuity at 
$$x = -3$$
?

**A.** 
$$f(x) = \frac{x^2 - 9}{(x+3)^2}$$
 **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

**B.** 
$$f(x) = \frac{x^3}{3}$$

C. 
$$f(x) = \frac{x^2}{x}$$

**D.** 
$$f(x) = \frac{|x+|}{2x+|}$$

**A.** 
$$\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$$
 **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$ 

**B.** 
$$\lim_{x \to 2} \frac{3}{x-2} = 3$$

C. 
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} =$$

$$\mathbf{D.} \lim_{x \to 0} \frac{\sin x}{x} = 0$$

**18.** For what value of a, does the function  $f(x) = \begin{cases} ax^2 + 1 & x \le 2 \\ 2x - a & x > 2 \end{cases}$  has no points

of discontinuity?

$$A_{\cdot} \frac{-3}{5}$$

**B.** 
$$\frac{-5}{3}$$

A. 
$$\frac{-3}{5}$$
 B.  $\frac{-5}{3}$  C.  $\frac{5}{3}$  D.  $\frac{3}{5}$ 

**19.**Which of the following is false?

**A**. The graph of a cubic function has exactly one point of inflection.

**B**.If 
$$f'(x) = g'(x)$$
, then  $f(x) = g(x)$ 

**C**. If 
$$g(x) = -5f(x)$$
, then  $g'(x) = -5f'(x)$ 

**D**. If 
$$y = \frac{2x}{\pi}$$
, then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

23. The result of  $\lim_{\Delta x \to 0} \frac{-3(x+\Delta x)^2+3x^2}{\Delta x}$  is:

**20.**If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.** -2**21.** Find the derivative of the function  $f(x) = x e^x$ .

$$\mathbf{A.}\,f'(x)=e^x$$

**B.** 
$$f'(x) = e^x(x+1)$$

**D.** 
$$f'(x) = xe^x + 1$$

**22.** Find the slope of the tangent line to the graph 
$$y^2 = \frac{x+1}{x-1}$$
 at the point  $(2, \sqrt{3})$ .

**A.** 
$$\frac{1}{\sqrt{3}}$$
 **B.**  $-\frac{1}{\sqrt{3}}$  **C.**  $-\frac{2}{\sqrt{3}}$  **D.**  $\frac{2}{\sqrt{3}}$ 

$$C 2 x^2$$

**A.**6*x* **B.**-6*x* **C.**3
$$x^2$$
 **D.**  $-3x^2$ 

**24.** Find the value of **k** such that the line 
$$y = \frac{3}{4}x + 3$$
 is tangent to the graph of the

function 
$$f(x) = \frac{-k}{x}$$
. **A.**  $k = 2$  **B.**  $k = -2$  **C.**  $k = 3$  **D.**  $k = -3$ 

$$\mathbf{A} \cdot k = 1$$

**B.** 
$$k = -2$$

**C.** 
$$k = 3$$

**D.** 
$$k = -3$$

**25.**Find the result of 
$$\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$$
 (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$  **26.**If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

A. 
$$\frac{y+2x}{2y-x}$$
 B.  $\frac{2x}{2y-x}$  C.  $\frac{y-2x}{2y-x}$ 

$$\mathbf{B} \cdot \frac{2x}{2y-x}$$

C. 
$$\frac{y-2x}{2y-x}$$

$$\mathbf{D.} \ \frac{-2x}{2y-x}$$

**27.** Find the third derivative of the function 
$$f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$$
.

**A.** 
$$f'''(x) = \frac{-2x}{x^2}$$

$$\mathbf{B.}f'''(x) = \frac{24}{x^4}$$

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

**D.** 
$$f'''(x) = \frac{96}{x^3}$$

**28.** The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases  $(18 \text{ cm}^2/\text{min})$ , what is the length of the side of the cube?

**A.** 2 cm

**B.** 4 *cm* 

C.  $2\sqrt{2}$  cm

**D.** 8 cm

**29.**In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet What is the highest point the rocket can reach?

**A.** 404 ft

**B.** 580 ft **C.** 606 ft **D.** 768 ft

**30.**On which interval is the function  $f(x) = x^{\frac{2}{3}} - 4$  decreasing?

**A.** ]  $-\infty$ , 0 [ **B.** ]  $-\infty$ , 4 [

C.  $]0,+\infty[$ 

**D.** None

**31.** Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

A.(1,0)

**B.** (2,0)

C.(0,0)

**D.** None

**32.**On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

**A.**] -1, 1 [ **B.**]  $-\infty$ , -1[ **C.**] -1,  $+\infty$ [ **D.** None

**33.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ .

**A.** y = 1 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$ 

**34.**Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph

**A.**  $f(x) = \frac{x^2}{x^2 + 3}$  **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

 $\mathbf{C} \cdot f(x) = \frac{x^2}{x^2 - 2}$   $\mathbf{D} \cdot f(x) = \frac{x^2 - 1}{x^2 + 2}$ 



**35.** The given graph on the right shows the curve of the function f On which interval is f' increasing?

 $\mathbf{A} \cdot \mathbf{I} - \infty , 0$ 

**B.**  $]0,+\infty[$ 

C.  $]-\infty$ ,  $0[\cup]0$ ,  $+\infty[$ D.  $]-\infty$ ,  $+\infty[$ 



**36.** Find the result of  $\lim_{x\to 0} \frac{\frac{5}{2x+10}-\frac{1}{2}}{x}$ . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$ 

**D**. 0

**37.** The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?

 $A.\frac{3}{5}$   $B.\frac{2}{5}$  C.1

**D.** 2



**38.** Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

**A.**  $f(x) = \frac{2x}{3-x}$  **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$  **39.** Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$ . **A.** -3 **B.** 3 **C.**  $+\infty$  **D.** 0

**40.** The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain .

**A.** Increasing

**B.** Decreasing **C.** Concave

**D.** Convex

**41.**If f(x) = 2x - 4 and g(x) = 1 + 3x, find the value of x when f(x) = g(x).

**A.** x = -1 **B.** x = 1 **C.** x = 5

**42.**The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is :

**A.** 0 **B.**-4

43. A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain  $(51200 \, m^2)$ . What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**A.**  $256 \, m$ ,  $200 \, m$ 

**B.** 400 m, 128 m **C.** 512 m, 100 m

**D.** x = -5

**D.** 320 m, 160 m

**44.**Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ -1 & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x-\sqrt{x}}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

**45.** Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** x = -2

**B.** y = -2 **C.** y = -4

**46.** Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ .

Find  $\frac{dx}{dt}$  at x = 2, by knowing that  $\frac{dy}{dt} = -3$ .

A.  $\frac{1}{4}$  B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

**47.** Find the result of  $\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$ . **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$ 

**48.**If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?

A. (f g' - f'g)' = f'g'' - f''g' B. fg'' + f''g = (f g)''

C.(f'g')' = f''g''

D. (f g)'' = f g'' + 2f'g' + f''g

**49.**IF  $f(x) = 3ax^3 + 3$  is a function and f'(3) = -162, find the result of f(2). **A.** 2 **B.** -51**C.** 51 **D.** -45

**50.**Which of the following graphs represents a function?







Kurdistan Region – Iraq SN: 30000002 In the Name of Allah Subject: Maths Time: 3:30 Hours **High Committee for General Examinations** General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Choose the correct option, two marks for each right answer

1. If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : A.  $2\pi$  B.  $-2\pi$  C. 2 D. -2

2. Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

**A.** 
$$f(x) = \frac{2x}{3-x}$$
 **B.**  $f(x) = \frac{-2x^2 + 6x + 1}{x-3}$  **C.**  $f(x) = \frac{-4x^2 - 18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2 + 12x}{x-3}$ 

3. The given graph on the right shows the curve of the function fOn which interval is f' increasing?



$$\mathbf{B.}\ ]0$$
,  $+\infty[$ 

$$\mathbf{C}.] - \infty$$
 ,0[  $\cup$  ]0 , + $\infty$ [

$$\mathbf{D}.]-\infty,+\infty[$$

**4.** Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ 

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$



5. Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

**A.** 
$$\frac{1}{\sqrt{3}}$$
 **B.**  $-\frac{1}{\sqrt{3}}$  **C.**  $-\frac{2}{\sqrt{3}}$  **D.**  $\frac{2}{\sqrt{3}}$ 

**6.** Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph.

$$\mathbf{A.}\,f(x) = \frac{x^2}{x^2 + 3}$$

**A.** 
$$f(x) = \frac{x^2}{x^2 + 3}$$
 **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

$$\mathbf{C.}f(x) = \frac{x^2}{x^2 - 3}$$

**C.**
$$f(x) = \frac{x^2}{x^2 - 3}$$
 **D.**  $f(x) = \frac{x^2 - 1}{x^2 + 3}$ 



7. For what value of  $\mathbf{a}$ , does the function  $f(x) = \begin{cases} \mathbf{a}x^2 + 1 & x \le 2 \\ 2x - \mathbf{a} & x > 2 \end{cases}$ has no points A.  $\frac{-3}{5}$  B.  $\frac{-5}{2}$  C.  $\frac{5}{3}$  D.  $\frac{3}{5}$ of discontinuity?

**8.** Which of the following is true?

**A.** 
$$\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$$
 **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$ 

**B.** 
$$\lim_{x\to 2} \frac{3}{x-2} = 3$$

$$\mathbf{C.} \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$$

$$\mathbf{D.} \lim_{x \to 0} \frac{\sin x}{x} = 0$$

**9.** The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?



**10.** The result of  $\lim_{\Delta x \to 0} \frac{-3(x+\Delta x)^2+3x^2}{\Delta x}$  is:

**A.**6*x* **B.**-6*x* **C.**3 $x^2$  **D.** -3 $x^2$ 

**11.** Find the result of  $\lim_{x \to 0} \frac{\frac{5}{2x+10} - \frac{1}{2}}{x}$ . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$ 

**12.**Find the derivative of the function  $f(x) = x e^x$ .

$$\mathbf{A.}\,f'(x)=e^x$$

**B.** 
$$f'(x) = e^x(x+1)$$

$$C.f'(x) = e^x + 1$$

**D.** 
$$f'(x) = xe^x + 1$$

**13.** Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)

**A.** 
$$\frac{3}{2}$$

**B.**  $\frac{-3}{2}$  **C.**  $\frac{2}{3}$  **D.**  $\frac{-2}{3}$ 

**14.**On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

$$A.] - 1,1[$$

**A.**] -1, 1 [ **B.**]  $-\infty$ , -1[ **C.**] -1,  $+\infty$ [ **D.** None

15. Find the equation of the line that passes through the point (-4,1) and perpendicular to the y - axis . A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0**D.** y + 3 = 0

**16.** Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

$$A.(1,0)$$
  $B.(2,0)$   $C.(0,0)$ 

**D.** None

**17.**The result of 
$$\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$$
 is: **A.** 0 **B.**-1 **C.**-2

**D.** Does not exist.

**18.** Which of the following functions is symmetric with respect to the y - axis?

**A.** 
$$x^2y - x^2 + 3y = 0$$
 **B.**  $y = \sqrt{x-4}$  **C.**  $y = |x+2| - 2$  **D.**  $x^2y - x = 0$ 

$$=\sqrt{x-4}$$

$$\mathbf{C.}y = |x + 2| - 2$$

19. The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases (18  $cm^2/min$ ), what is the length of the side of the cube?

**B.** 4 *cm* **C.**  $2\sqrt{2}$  *cm* 

**D.** 8 *cm* 

**20.** Find the equation of a line passing through the points (-2, -4) and (-2, 4)

**A.** 
$$x = -2$$

**B.** 
$$y = -2$$
 **C.**  $y = -4$ 

**C.** 
$$y = -4$$

**D.** 
$$y = -2x - 8$$

**21.** Find the result of  $\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$ 

**22.** Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ .

Find 
$$\frac{dx}{dt}$$
 at  $x = 2$ , by knowing that  $\frac{dy}{dt} = -3$ .

A. 
$$\frac{1}{4}$$

A.  $\frac{1}{4}$  B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$ 

**23.** Determine the range of the function *f* from the given graph on the right.

$$A.[-2,2]$$

$$B.[-2,1]$$

$$C.[-1,2]$$
 **D**. [0,2]



**24.**Which of the following graphs represents a function?



**25.** Find the result of  $\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$ . **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$ 

**26.** The line y = -4x + 7 passes through which of the following points?

**A.** 
$$(5,-3)$$
 **B.**  $(-3,5)$ 

$$B. (-3, 5)$$

$$C.(2,-1)$$

$$\mathbf{D} \cdot (-1, 2)$$





**28.**If 
$$x^2 - xy + y^2 = 1$$
 then which of the following is equal to  $\frac{dy}{dx}$ ?

A. 
$$\frac{y+2x}{2y-x}$$

$$\mathbf{B} \cdot \frac{2x}{2y-x}$$

A. 
$$\frac{y+2x}{2y-x}$$
 B.  $\frac{2x}{2y-x}$  C.  $\frac{y-2x}{2y-x}$ 

**D.** 
$$\frac{-2x}{2x^{2}}$$

**29.** Determine the graph of the function 
$$f(x) = 2 - |x + 1|$$
 by using point plotting.



**30.** If 
$$f(x) = x^3$$
 then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

**A.** 
$$x^2 - 2x$$

$$\mathbf{R} \cdot \mathbf{r}^2 + 2\mathbf{r}$$

**A.** 
$$x^2 - 2x$$
 **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$ 

**D.** 
$$x^2 - 2x + 4$$

**A**. The graph of a cubic function has exactly one point of inflection.

**B**.If 
$$f'(x) = g'(x)$$
, then  $f(x) = g(x)$ 

**C**. If 
$$g(x) = -5f(x)$$
, then  $g'(x) = -5f'(x)$ 

**D**. If 
$$y = \frac{2x}{\pi}$$
, then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

**32.** Find the domain of the function 
$$g \circ f$$
 when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2,2]$$

**B.** 
$$[0,2]$$
 **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.**  $[-2,0]$ 

**D.** 
$$[-2,0]$$

## 33. A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain $(51200 \, m^2)$ . What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**A.** 
$$256 m$$
,  $200 m$ 

**B.** 
$$400 m$$
,  $128 m$  **C.**  $512 m$ ,  $100 m$ 

**34.** Determine the equation of the horizontal asymptote of the function 
$$f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$$
.

**A.** 
$$y = 1$$

**B.** 
$$y = \frac{-3}{2}$$

**B.** 
$$y = \frac{-3}{2}$$
 **C.**  $y = \frac{-3}{5}$ 

**D.** 
$$y = 0$$

**36.**IF 
$$f(x) = 3ax^3 + 3$$
 is a function and  $f'(3) = -162$ , find the result of  $f(2)$ .

**A.** 2 **B.** 
$$-51$$

**37.** The result of 
$$\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$$
 is : **A.** 0 **B.**-4

**38.**Use the given graph on the right to find the result of 
$$\lim_{x\to 0^+} f(x)$$

**A**. 0 **B**. 
$$-1$$



**39.**On which interval is the function 
$$f(x) = x^{\frac{2}{3}} - 4$$
 decreasing?

$$\mathbf{A} \cdot ] - \infty , 0 [$$

**A.** ] 
$$-\infty$$
, 0 [ **B.** ]  $-\infty$ , 4 [ **C.** ] 0,  $+\infty$ [

$$\mathbf{C}$$
. ] 0,  $+\infty$ [

**40.** The function 
$$f(x) = \frac{-1}{x+2}$$
 is always ..... in its domain .

**41.** Find the value of **k** such that the line 
$$y = \frac{3}{4}x + 3$$
 is tangent to the graph of the

function 
$$f(x) = \frac{-k}{x}$$
. **A.**  $k = 2$  **B.**  $k = -2$  **C.**  $k = 3$  **D.**  $k = -3$ 

**A.** 
$$k = 2$$

**B.** 
$$k = -1$$

**C.** 
$$k = 3$$

**D.** 
$$k = -1$$

**42.** Find the result of 
$$\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$$
. **A.** -3 **B.** 3 **C.** + $\infty$ 

**A.** 
$$-3$$

$$\mathbf{D} = 0$$

**43.** Which of the following functions has no vertical asymptote at 
$$x = 2$$
?

**A.** 
$$f(x) = \frac{x^2 - 4}{(x - 2)^2}$$
 **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$  **D.**  $f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$ 

**B.** 
$$f(x) = \frac{x+2}{x^2-4}$$

C. 
$$f(x) = \frac{x^2+4}{x^2-3x+2}$$

$$f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$$

**44.**If 
$$f$$
 and  $g$  are two differentiable function for all  $x$ , and so are their derivatives. Which of the following is true?

A. 
$$(f g' - f' g)' = f' g'' - f'' g'$$
  
B.  $f g'' + f'' g = (f g)''$   
C.  $(f' g')' = f'' g''$   
D.  $(f g)'' = f g'' + 2f' g''$ 

$$f''g'$$
 B.  $fg'' + f''g = (fg)''$   
D.  $(fg)'' = fg'' + 2f'g' + f''g$ 

**45.** The result of 
$$\lim_{x \to 3^{-}} \frac{2-x}{x-3}$$
 is: **A.**  $-\infty$  **B.**  $+\infty$  **C.** 0 **D.**  $-1$ 

$$A. -\infty B. +\infty$$

**46.**In a fireworks festival, a rocket is launched upward. The function 
$$S(t) = -16t^2 + 192t + 4$$
 is the position function of the rocket,  $t$  is measured in seconds and  $S$  in feet What is the highest point the rocket can reach?

**47.**If 
$$f(x) = 2x - 4$$
 and  $g(x) = 1 + 3x$ , find the value of x when  $f(x) = g(x)$ .

**A.** 
$$x = -1$$
 **B.**  $x = 1$  **C.**  $x = 5$  **D.**  $x = -5$ 

**B.** 
$$x = 1$$

**C.** 
$$x = 5$$

**D.** 
$$x = -5$$

**48.**Redefine the function 
$$f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$$
 to be continuous at  $x = 1$ .

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ -1 & x = 1 \end{cases}$$

**49.** Which of the following functions has a removable discontinuity at 
$$x = -3$$
?

**A.** 
$$f(x) = \frac{x^2 - 9}{(x+3)^2}$$
 **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

**B.** 
$$f(x) = \frac{x^3 + 2}{2x + 6}$$

$$\mathbf{C.}\,f(x) = \frac{x^2}{x^2}$$

**D.** 
$$f(x) = \frac{1}{2x+1}$$

**50.** The result of 
$$\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2}$$
 is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$  **D.**  $\frac{1}{9}$ 

$$C.\frac{-1}{9}$$

**D.** 
$$\frac{1}{9}$$

Kurdistan Region – Iraq SN: 30000003 In the Name of Allah

High Committee for General Examinations General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Subject: Maths Time: 3:30 Hours

Choose the correct option, two marks for each right answer

**1.** On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

$$[A.] - 1, 1[$$

$$\mathbf{B.}\ ]-\infty$$
,  $-1[$ 

**A.**] 
$$-1$$
, 1 [ **B.**]  $-\infty$ ,  $-1$ [ **C.**]  $-1$ ,  $+\infty$ [ **D.** None

2. Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$ . A. -3 B. 3 C.  $+\infty$  D. 0

$$A. -3$$

3. A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain  $(51200 \, m^2)$ . What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

- **A.**  $256 \, m$ ,  $200 \, m$
- **B.** 400 m, 128 m **C.** 512 m, 100 m
- **D.** 320 m, 160 m
- **4.** Find the result of  $\lim_{x \to 0} \frac{\frac{3}{2x+10} \frac{1}{2}}{x}$ . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$

5. Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.









**6.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ .

**A.** 
$$y = 1$$

**B.** 
$$y = \frac{-3}{2}$$

**A.** 
$$y = 1$$
 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$ 

**D.** 
$$y = 0$$

7. Use the given graph of the function y = f(x) on the right, to determine the graph of the function y = -f(x-2)









- **8.** The result of  $\lim_{x\to 3^-} \frac{2-x}{x-3}$  is:  $\mathbf{A} \infty \quad \mathbf{B} + \infty$
- **C.** 0
- **D.** -1

**9.** The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?

- $A.\frac{3}{5}$   $B.\frac{2}{5}$  C.1
- **D.** 2

**10.** Find the equation of the line that passes through the point (-4,1) and perpendicular to the y - axis . A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0**D.** y + 3 = 0

- **11.**Which of the following functions has no vertical asymptote at x = 2?
  - **A.**  $f(x) = \frac{x^2 4}{(x 2)^2}$  **B.**  $f(x) = \frac{x + 2}{x^2 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 2x + 2}$  **D.**  $f(x) = \frac{x^2 + x 6}{2x^2 8}$

12. Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

$$\mathbf{A.}f(x) = \frac{2x}{3-x}$$

**A.** 
$$f(x) = \frac{2x}{3-x}$$
 **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

C. 
$$f(x) = \frac{-4x^2 - 18x}{2x - 6}$$

**D.** 
$$f(x) = \frac{-x^2 + 12x}{x - 3}$$

**13.**Find the derivative of the function  $f(x) = x e^x$ .

$$\mathbf{A.}\,f'(x)=e^x$$

**A.** 
$$f'(x) = e^x$$
 **B.**  $f'(x) = e^x(x+1)$  **C.**  $f'(x) = e^x + 1$ 

$$\mathbf{C.}f'(x) = e^x + 1$$

$$\mathbf{D.}\ f'(x) = xe^x + 1$$

**14.**The result of 
$$\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2}$$
 is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$  **D.**  $\frac{1}{9}$  **15.**The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is: **A.** 0 **B.** -4 **C.** 4

$$C.\frac{-1}{9}$$

**D.** 
$$\frac{1}{9}$$

**15.**The result of 
$$\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$$
 is

**16.**If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?

A. 
$$(f g' - f'g)' = f'g'' - f''g'$$
 B.  $fg'' + f''g = (f g)''$ 

B. 
$$fg'' + f''g = (fg)''$$

$$C.(f'g')' = f''g''$$

D. 
$$(f g)'' = f g'' + 2f'g' + f''g$$

17. Which of the following functions is symmetric with respect to the y - axis?

**A.** 
$$x^2y - x^2 + 3y = 0$$
 **B.**  $y = \sqrt{x-4}$  **C.**  $y = |x+2| - 2$  **D.**  $x^2y - x = 0$ 

**B.** 
$$y = \sqrt{x - 4}$$

$$C.y = |x + 2| - 2$$

$$y - x = 0$$

**18.** Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)

**A.** 
$$\frac{3}{2}$$
 **B.**  $\frac{-3}{2}$  **C.**  $\frac{2}{3}$  **D.**  $\frac{-2}{3}$ 

$$\mathbf{B}.\frac{3}{2}$$

**D.** 
$$\frac{}{3}$$

**19.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2,2]$$
 **B.**  $[0,2]$  **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.**  $[-2,0]$ 

$$[-\infty,-2]$$
 0

**20.** The result of 
$$\lim_{\Delta x \to 0} \frac{-3(x + \Delta x)^2 + 3x^2}{\Delta x}$$
 is: **A.** 6*x* **B.** -6*x* **C.** 3*x*<sup>2</sup> **D.** -3*x*<sup>2</sup>

$$A_{\bullet}O\lambda$$

**21.**Which of the following is false?

**A**. The graph of a cubic function has exactly one point of inflection.

**B**.If 
$$f'(x) = g'(x)$$
, then  $f(x) = g(x)$ 

**C**. If 
$$g(x) = -5f(x)$$
, then  $g'(x) = -5f'(x)$ 

**D**. If 
$$y = \frac{2x}{\pi}$$
, then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

22. Which of the following functions has a removable discontinuity at x = -3?

**A.** 
$$f(x) = \frac{x^2 - 9}{(x+3)^2}$$
 **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

**B.** 
$$f(x) = \frac{x^3 + x^2}{2x + x^2}$$

$$\mathbf{C.}\,f(x) =$$

**D.** 
$$f(x) = \frac{12x+6}{2x+6}$$

23. The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain .

A.  $\frac{y+2x}{2y-x}$  B.  $\frac{2x}{2y-x}$  C.  $\frac{y-2x}{2y-x}$ 

$$\mathbf{D}$$
. Convex

**24.**If 
$$x^2 - xy + y^2 = 1$$
 then which of the following is equal to  $\frac{dy}{dx}$ ?

**D.** 
$$\frac{-2x}{2y-x}$$

**25.**Determine the range of the function *f* from the given graph on the right.

$$A = \begin{bmatrix} -2 & 2 \end{bmatrix}$$

$$B.[-2,1]$$

$$[-1,2]$$
 I



| <b>26.</b> Depending on the intermediate value theorem (IVT). If the function $f$ is continuous between           |
|-------------------------------------------------------------------------------------------------------------------|
| (x = a  and  x = b), then the equation $f(x) = 0$ has at least one root between two numbers <b>a</b> and <b>b</b> |
| when the signs $f(a)$ and $f(b)$ are                                                                              |

**A.** Positive

**B.** Negative

**C.** Opposite

27. Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ .

Find  $\frac{dx}{dt}$  at x=2, by knowing that  $\frac{dy}{dt}=-3$ .

A.  $\frac{1}{4}$  B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

**28.** For what value of  $\mathbf{a}$ , does the function  $f(x) = \begin{cases} \mathbf{a}x^2 + 1 & x \leq 2 \\ 2x - \mathbf{a} & x > 2 \end{cases}$  has no points of discontinuity?  $\mathbf{A} \cdot \frac{-3}{5} \quad \mathbf{B} \cdot \frac{-5}{3} \quad \mathbf{C} \cdot \frac{5}{3} \quad \mathbf{D} \cdot \frac{3}{5}$ 

**29.** Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function  $f(x) = \frac{-k}{x}$ . **A.** k = 2 **B.** k = -2 **C.** k = 3

**D.** k = -3

**30.** If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

**A.**  $x^2 - 2x$ 

**B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$ 

**D.**  $x^2 - 2x + 4$ 

**31.**The line y = -4x + 7 passes through which of the following points?

**A.** (5, -3) **B.** (-3, 5)

C.(2,-1)

 $\mathbf{D} \cdot (-1,2)$ 

**32.**The given graph on the right shows the curve of the function f On which interval is f' increasing?



**B.**  $]0,+\infty[$ 

 $[\mathbf{C}, ] - \infty, 0[ \cup ]0, +\infty[$   $[\mathbf{D}, ] - \infty, +\infty[$ 



33. If f(x) = 2x - 4 and g(x) = 1 + 3x, find the value of x when f(x) = g(x).

**A.** x = -1 **B.** x = 1

**C.** x = 5

**D.** x = -5**34.** If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : **A.**  $2\pi$ 

**B.**  $-2\pi$  **C.** 2 **D.** -2

**35.**Use the intercepts, symmetry, asymptotes, first and second derivative test

to determine the function of the given graph.

**A.**  $f(x) = \frac{x^2}{x^2 + 3}$  **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

 $\mathbf{C}.f(x) = \frac{x^2}{x^2 - 3}$   $\mathbf{D}.f(x) = \frac{x^2 - 1}{x^2 + 2}$ 



**36.**Use the given graph on the right to find the result of  $\lim_{x\to 0^+} f(x)$ 

**A**. 0

**B.** -1

**C.** 2



37.IF  $f(x) = 3ax^3 + 3$  is a function and f'(3) = -162, find the result of f(2).

**A.** 2

**B.** -51

**C.** 51

**38.** Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** x = -2

**B.** y = -2 **C.** y = -4

**D.** v = -2x - 8

**39.** The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases (18  $cm^2/min$ ), what is the length of the side of the cube?

**A.** 2 cm

**B.** 4 *cm* 

C.  $2\sqrt{2}$  cm

**D.** 8 *cm* 

**40.**Which of the following graphs represents a function?



**41.** Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

**A.** 
$$\frac{1}{\sqrt{3}}$$
 **B.**  $-\frac{1}{\sqrt{3}}$  **C.**  $-\frac{2}{\sqrt{3}}$  **D.**  $\frac{2}{\sqrt{3}}$ 

**42.** In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet

What is the highest point the rocket can reach?

**A.** 404 ft

**B.** 580 ft **C.** 606 ft **D.** 768 ft

**43.**Which of the following is true?

**A.**  $\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$  **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2 - 1}{x-1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$  **44.** The result of  $\lim_{x \to 0} \frac{-x}{\sqrt{x+1} - 1}$  is: **A.** 0 **B.** -1 **C.** -2 **D.** Does not exist.

**45.**On which interval is the function  $f(x) = x^{\frac{2}{3}} - 4$  decreasing?

**A.** ]  $-\infty$ , 0 [ **B.** ]  $-\infty$ , 4 [ **C.** ] 0,  $+\infty$ [

**46.** Find the result of  $\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$ 

**47.**Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x \neq 1 \end{cases}$$

**48.** Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

A.(1.0)

**B.** (2.0)

C. (0,0)

**D.** None

**49.** Find the result of  $\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$ . **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$ 

**50.** Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ .

**A.**  $f'''(x) = \frac{-24}{x^4}$  **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

Kurdistan Region – Iraq SN: 30000004 In the Name of Allah **High Committee for General Examinations** 

Subject: Maths Time: 3:30 Hours

General exams for preparatory stage (science) For the Academic year (2020-2021) First attempt

Choose the correct option, two marks for each right answer

1. Use the given graph on the right to find the result of  $\lim_{x\to 0^+} f(x)$ 



**C.** 2



2. Use the given graph of the function y = f(x) on the right, to determine the graph of the function y = -f(x-2)



- 3. The result of  $\lim_{x\to 3^-} \frac{2-x}{x-3}$  is: A.  $-\infty$  B.  $+\infty$
- **D.** -1
- **4.** Redefine the function  $f(x) = \frac{\sqrt{2-x} \sqrt{x}}{x-1}$  to be continuous at x = 1.

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ -1 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C}_{\bullet} g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{1}{x-1} & x \neq 1 \\ -1 & x = 1 \end{cases}$$

- 5. Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$ .

- **6.** Find the equation of a line passing through the points (-2, -4) and (-2, 4).

  - **A.** x = -2 **B.** y = -2 **C.** y = -4
- 7. Find the domain of the function  $g \circ f$  when  $f(x) = 4 x^2$  and  $g(x) = -\sqrt{x}$ .
  - **A.** [-2,2] **B.** [0,2] **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.** [-2,0]

- **8.** If  $x^2 xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?
  - A.  $\frac{y+2x}{2y-x}$  B.  $\frac{2x}{2y-x}$  C.  $\frac{y-2x}{2y-x}$

- **9.** Find the value of **b** when the distance between the point (1, -3) and the line 3x by = 5 is (zero)

  - A.  $\frac{3}{2}$  B.  $\frac{-3}{2}$  C.  $\frac{2}{3}$
- **10.** Which of the following functions has a removable discontinuity at x = -3?

- **A.**  $f(x) = \frac{x^2 9}{(x+3)^2}$  **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$
- 11. The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases  $(18 \text{ cm}^2/\text{min})$ , what is the length of the side of the cube?
  - **A.** 2 cm
- **B.** 4 *cm*
- C.  $2\sqrt{2}$  cm
- **D.** 8 cm

**12.** Which of the following functions has no vertical asymptote at x = 2?

**A.** 
$$f(x) = \frac{x^2-4}{(x-2)^2}$$

**A.**  $f(x) = \frac{x^2 - 4}{(x - 2)^2}$  **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$  **D.**  $f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$ 

**13.** Determine the range of the function f

from the given graph on the right.



**14.** Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function 
$$f(x) = \frac{-k}{x}$$
. **A.**  $k = 2$  **B.**  $k = -2$  **C.**  $k = 3$ 

**A.** 
$$k = 2$$

**B.** 
$$k = -2$$

**C.** 
$$k = 3$$

**D.** 
$$k = -3$$

**15.** Find the derivative of the function  $f(x) = x e^x$ .

**A.** 
$$f'(x) = e^x$$
 **B.**  $f'(x)$ 

$$= e^{x}(x+1)$$

**D.** 
$$f'(x) = xe^x + 1$$

**16.** If 
$$f(x) = 2x - 4$$
 and  $g(x) = 1 + 3x$ , find the value of x when  $f(x) = g(x)$ .

**A.** 
$$x = -1$$
 **B.**  $x = 1$ 

**B.** 
$$x = 1$$

**C.** 
$$x = 5$$

**D.** 
$$x = -5$$

• 
$$x = -5$$

**17.**Which of the following is false?

**A**. The graph of a cubic function has exactly one point of inflection.

**B**.If 
$$f'(x) = g'(x)$$
, then  $f(x) = g(x)$ 

**C**. If 
$$g(x) = -5f(x)$$
, then  $g'(x) = -5f'(x)$ 

**D**. If 
$$y = \frac{2x}{\pi}$$
, then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

**18.** For what value of  $\mathbf{a}$ , does the function  $f(x) = \begin{cases} \mathbf{a}x^2 + 1 & x \le 2 \\ 2x - \mathbf{a} & x > 2 \end{cases}$ **A.**  $\frac{-3}{5}$  **B.**  $\frac{-5}{3}$  **C.**  $\frac{5}{3}$ 

**A.** 
$$\frac{-3}{5}$$

**B.** 
$$\frac{-5}{3}$$

$$C.\frac{3}{3}$$

**D**. 
$$\frac{3}{5}$$

**19.** The given graph on the right shows the curve of the function fOn which interval is f' increasing?

$$A.] - \infty .0[$$

**B.** 
$$]0,+\infty[$$

$$[\mathbf{C}.] - \infty, 0[\cup]0, +\infty[$$
  $[\mathbf{D}.] - \infty, +\infty[$ 

$$\mathbf{D}.\ ]-\infty$$
,  $+\infty$ 

**20.** If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

$$\Delta r^2 - 2r$$

$$\mathbf{R} \ \mathbf{r}^2 + 2\mathbf{r}$$

**A.** 
$$x^2 - 2x$$
 **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$ 

**D.** 
$$x^2 - 2x + 4$$

**21.** Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ 

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

$$\mathbf{B.}f'''(x) =$$

$$\mathbf{C.}\,f'''(x) =$$

**D.** 
$$f^{--}(x) = \frac{1}{x^5}$$

22.If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : A.  $2\pi$  B.  $-2\pi$  C. 2 D. -2**23.** Which of the following functions is symmetric with respect to the y - axis?

**A.** 
$$x^2y - x^2 + 3y = 0$$
 **B.**  $y = \sqrt{x-4}$  **C.**  $y = |x+2| - 2$  **D.**  $x^2y - x = 0$ 

$$C.y = |x + 2| - 2$$

**D.** 
$$x^2y - x = 0$$

**24.** Find the result of 
$$\lim_{x\to 0} \frac{\frac{5}{2x+10} - \frac{1}{2}}{x}$$
. **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$ 

**B**. 
$$-\frac{1}{20}$$

$$C. -\frac{1}{1}$$





**26.** Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph

**A.** 
$$f(x) = \frac{x^2}{x^2 + 3}$$
 **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

$$\mathbf{B.}\,f(x) = \frac{x}{x^2 + 3}$$

$$\mathbf{C.}f(x) = \frac{x^2}{x^2 - 3}$$

**C.**
$$f(x) = \frac{x^2}{x^2 - 3}$$
 **D.**  $f(x) = \frac{x^2 - 1}{x^2 + 3}$ 



**27.**The result of 
$$\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$$
 is :

$$\mathbf{D} \cdot \frac{4}{5}$$

**28.**IF 
$$f(x) = 3ax^3 + 3$$
 is a function and  $f'(3) = -162$ , find the result of  $f(2)$ .

**A.** 2 **B.** 
$$-51$$
 **C.** 51 **D.**

**29.**In a fireworks festival, a rocket is launched upward. The function 
$$S(t) = -16t^2 + 192t + 4$$
 is the position function of the rocket, **t** is measured in seconds and **S** in feet What is the highest point the rocket can reach?

**30.** Determine the equation of the horizontal asymptote of the function 
$$f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$$
.

**A.** 
$$y = 1$$

**B.** 
$$y = \frac{-3}{2}$$

**A.** 
$$y = 1$$
 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$ 

**D.** 
$$y = 0$$

31. The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?



$$A.\frac{3}{5}$$
  $B.\frac{2}{5}$  C.1



$$\mathbf{A.6}x$$

$$\mathbf{B}$$
. $-6x$ 

**A.**6*x* **B.**-6*x* **C.**3
$$x^2$$
 **D.** -3 $x^2$ 

**D.** 
$$-3x$$

**A.** 
$$\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$$
 **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2-1}{x-1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$ 

**B.** 
$$\lim_{x\to 2} \frac{3}{x-2} =$$

$$\mathbf{C.} \lim_{x \to 1} \frac{x^{2-1}}{x-1} = 0$$

$$\mathbf{D.} \lim_{x \to 0} \frac{\sin x}{x} =$$



**35.** Depending on the intermediate value theorem (IVT). If the function 
$$f$$
 is continuous between  $(x = a \text{ and } x = b)$ , then the equation  $f(x) = 0$  has at least one root between two numbers  $\mathbf{a}$  and  $\mathbf{b}$  when the signs  $f(a)$  and  $f(b)$  are .............

**36.**On which interval is the function 
$$f(x) = x^{\frac{2}{3}} - 4$$
 decreasing?

**A.** ] 
$$-\infty$$
, 0 [ **B.** ]  $-\infty$ , 4 [ **C.** ] 0,  $+\infty$ [

$$\mathbf{B}.]-\infty$$
 ,

37. Find the result of 
$$\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$$
 (Use L'Hopital's rule): A. 0 B. 1 C.  $\frac{1}{4}$  D.  $+\infty$ 

**38.** Assume that 
$$x$$
 and  $y$  are two differentiable of a variable  $t$ . If  $y = x^3 + 1$ .

Find 
$$\frac{dx}{dt}$$
 at  $x = 2$ , by knowing that  $\frac{dy}{dt} = -3$ .

A. 
$$\frac{1}{4}$$
 B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

**B.** 
$$\frac{-1}{4}$$

• 
$$\frac{1}{2}$$

$$0.\frac{-1}{2}$$

**39.** The line 
$$y = -4x + 7$$
 passes through which of the following points?

**A.** 
$$(5, -3)$$
 **B.**  $(-3, 5)$  **C.**  $(2, -1)$ 

**B.** 
$$(-3,5)$$

$$C.(2,-1)$$

$$\mathbf{D}.(-1,2)$$

**40.**A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain 
$$(51200 \, m^2)$$
. What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**A.** 
$$256 \, m$$
,  $200 \, m$ 

**B.** 
$$400 m$$
,  $128 m$  **C.**  $512 m$ ,  $100 m$ 

$$\mathbf{C.}\ 512\ m$$
,  $100\ m$ 

**41.**If 
$$f$$
 and  $g$  are two differentiable function for all  $x$ , and so are their derivatives. Which of the following is true?

A. 
$$(f g' - f'g)' = f'g'' - f''g'$$
 B.  $fg'' + f''g = (f g)''$ 

3. 
$$fg'' + f''g = (fg)''$$

$$C. (f'g')' = f''g''$$

D. 
$$(f g)'' = f g'' + 2f'g' + f''g$$

**42.** Find the point of inflection for the function 
$$f(x) = 3x(x-1)(x-2)$$
.

$$B.(2,0)$$
  $C.(0,0)$ 

**43.**The result of 
$$\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2}$$
 is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$  **D.**  $\frac{1}{9}$ 

$$C.\frac{-1}{9}$$

$$\mathbf{D} \cdot \frac{1}{2}$$

**44.**On which interval is the function 
$$f(x) = \frac{x-1}{x+1}$$
 convex ?

$$A.] - 1,1[$$

**A.**] 
$$-1$$
, 1 [ **B.**]  $-\infty$ ,  $-1$ [ **C.**]  $-1$ ,  $+\infty$ [ **D.** None

**45.** The function 
$$f(x) = \frac{-1}{x+2}$$
 is always ..... in its domain .

**46.** Find the equation of the line that passes through the point 
$$(-4, 1)$$
 and perpendicular to the  $y$ -axis. **A.**  $x$  + 4 = 0 **B.**  $y$  - 4 $x$  = 0 **C.**  $y$  - 1 = 0 **D.**  $y$  + 3 =

**47.** Find the result of 
$$\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$$
. **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$ 

$$A_{\cdot} \frac{1}{\sqrt{1}}$$

**B.** 
$$2\sqrt{5}$$
 **C.**  $\frac{1}{2}$ 

$$\mathbf{D} \cdot \frac{1}{\sqrt{2}}$$

**48.** Find the slope of the tangent line to the graph 
$$y^2 = \frac{x+1}{x-1}$$
 at the point  $(2, \sqrt{3})$ .

$$\frac{1}{x} = \frac{1}{x-1} \text{ at the point } (2, \sqrt{2})$$

A. 
$$\frac{1}{\sqrt{3}}$$
 B.  $-\frac{1}{\sqrt{3}}$  C.  $-\frac{2}{\sqrt{3}}$  D.  $\frac{2}{\sqrt{3}}$ 

**49.** Which of the following functions has a vertical asymptote at 
$$x = 3$$
 and slant asymptote at  $y = -2x$ ?

**A.** 
$$f(x) = \frac{2x}{3-x}$$
 **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

**B.** 
$$f(x) = \frac{2x + 6x + 1}{x - 3}$$

$$\chi$$
-3

**50.** The result of 
$$\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$$
 is:

Kurdistan Region – Iraq SN: 30000005 In the Name of Allah **Subject: Maths Time: 3:30 Hours High Committee for General Examinations** General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Choose the correct option, two marks for each right answer

**1.** If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

A. 
$$\frac{y+2x}{2y-x}$$
 B.  $\frac{2x}{2y-x}$  C.  $\frac{y-2x}{2y-x}$ 

$$\mathbf{B} \cdot \frac{2x}{2y-x}$$

C. 
$$\frac{y-2x}{2y-x}$$

**D.** 
$$\frac{-2x}{2y-x}$$

2. Which of the following functions is symmetric with respect to the y - axis?

**A.** 
$$x^2y - x^2 + 3y = 0$$
 **B.**  $y = \sqrt{x-4}$  **C.**  $y = |x+2| - 2$  **D.**  $x^2y - x = 0$ 

**B.** 
$$y = \sqrt{x - 4}$$

$$C.y = |x + 2| - 2$$

$$\mathbf{D.} \ x^2y - x = 0$$

3. Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

**A.** 
$$f(x) = \frac{2x}{3-x}$$
 **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

**B.** 
$$f(x) = \frac{-2x^2 + 6x + 1}{x - 3}$$

$$\mathbf{C.}\,f(x) = \frac{-4x^2 - 18x}{2x - 6}$$

**D.** 
$$f(x) = \frac{-x^2 + 12x}{x - 3}$$

**4.** Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

$$B.(2,0)$$
  $C.(0,0)$ 

**5.** Determine the range of the function ffrom the given graph on the right.

$$A.[-2,2]$$

$$B.[-2,1]$$

$$C.[-1,2]$$



**6.** If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.** -2

7. Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ .

Find  $\frac{dx}{dt}$  at x=2, by knowing that  $\frac{dy}{dt}=-3$ .

A. 
$$\frac{1}{4}$$
 B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

**B.** 
$$\frac{-1}{4}$$

$$C.\frac{1}{2}$$

**D**. 
$$\frac{-1}{2}$$

**8.** The line y = -4x + 7 passes through which of the following points?

$$A.(5,-3)$$
  $B.(-3,5)$ 

$$B. (-3, 5)$$

$$C.(2,-1)$$

$$\mathbf{D} \cdot (-1, 2)$$

**9.** Find the result of  $\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$ . **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$ 

**A.** 
$$\frac{1}{\sqrt{10}}$$

$$C.\frac{-1}{\sqrt{5}}$$

$$\mathbf{D} \cdot \frac{1}{2\sqrt{5}}$$

10.A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain (51200  $m^2$ ). What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

- **A.**  $256 \, m$ ,  $200 \, m$
- **B.** 400 m, 128 m **C.** 512 m, 100 m
- **D.** 320 m, 160 m

**11.**Which of the following is false?

**A**. The graph of a cubic function has exactly one point of inflection.

**B**.If 
$$f'(x) = g'(x)$$
, then  $f(x) = g(x)$ 

**C**. If 
$$g(x) = -5f(x)$$
, then  $g'(x) = -5f'(x)$ 

**D**. If 
$$y = \frac{2x}{\pi}$$
, then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

**12.**Which of the following graphs represents a function?



13. In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet What is the highest point the rocket can reach?

**14.** Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....

**B.** Negative

C. Opposite

**D.** None

**15.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ .

**A.** 
$$y = 1$$

**B.** 
$$y = \frac{3}{2}$$

**A.** 
$$y = 1$$
 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$  **D.**  $y = 0$ 

**D.** 
$$y = 0$$

**16.** Find the derivative of the function  $f(x) = x e^x$ .

$$\mathbf{A.}\,f'(x)=e^x$$

**A.** 
$$f'(x) = e^x$$
 **B.**  $f'(x) = e^x(x+1)$  **C.**  $f'(x) = e^x + 1$  **D.**  $f'(x) = xe^x + 1$ 

$$\mathbf{C.}\mathbf{f}(\mathbf{x}) = \mathbf{e}^{\mathbf{x}} +$$

**17.** Find the result of  $\lim_{x \to 0} \frac{\frac{3}{2x+10} - \frac{1}{2}}{x}$ . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$ 

$$\frac{2}{1}$$
 . A.  $\frac{3}{2}$ 

**B**. 
$$-\frac{1}{20}$$

**18.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2, 2]$$

**A.** 
$$[-2,2]$$
 **B.**  $[0,2]$  **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.**  $[-2,0]$ 

**D.** 
$$[-2,0]$$

19. The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?

$$A.\frac{3}{5}$$
  $B.\frac{2}{5}$ 

$$\mathbf{B}.\frac{2}{5}$$

**20.** The result of  $\lim_{\Delta x \to 0} \frac{-3(x + \Delta x)^2 + 3x^2}{\Delta x}$  is: **A.** 6*x* **B.** -6*x* **C.** 3*x*<sup>2</sup> **D.** -3*x*<sup>2</sup>

$$\mathbf{B}$$
. $-6x$ 

$$\mathbf{D.} 3x^2$$
 **D.**  $-3x$ 

**21.** For what value of a, does the function  $f(x) = \begin{cases} ax^2 + 1 \\ 2x - a \end{cases}$   $\begin{cases} x \le 2 \\ x > 2 \end{cases}$  has no points of discontinuity?  $\mathbf{A} \cdot \frac{-3}{5} \qquad \mathbf{B} \cdot \frac{-5}{2} \qquad \mathbf{C} \cdot \frac{5}{3} \qquad \mathbf{D} \cdot \frac{3}{5}$ 

22. The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain .

**A.** Increasing

**B.** Decreasing **C.** Concave **D.** Convex

**23.**The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is : **A.** 0 **B.**-4 **C.** 4

**24.** Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)

**A.** 
$$\frac{3}{2}$$
 **B.**  $\frac{-3}{2}$  **C.**  $\frac{2}{3}$ 

**25.** Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** 
$$x = -2$$

**B.** 
$$y = -2$$

**C.** 
$$y = -4$$

**A.** 
$$x = -2$$
 **B.**  $y = -2$  **C.**  $y = -4$  **D.**  $y = -2x - 8$ 

- **26.** The result of  $\lim_{x\to 3^-} \frac{2-x}{x-3}$  is:
- $A. -\infty B. +\infty$
- **C.** 0

- **27.**Use the given graph on the right to find the result of  $\lim_{x\to 0^+} f(x)$
- **B.** −1 **C.** 2
- **D.** Does not exist.



- 28. Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph .

  - **A.**  $f(x) = \frac{x^2}{x^2 + 3}$  **B.**  $f(x) = \frac{x}{x^2 + 3}$

  - C. $f(x) = \frac{x^2}{x^2 3}$  D.  $f(x) = \frac{x^2 1}{x^2 + 3}$



- **29.**Which of the following functions has no vertical asymptote at x = 2?
- **A.**  $f(x) = \frac{x^2 4}{(x 2)^2}$  **B.**  $f(x) = \frac{x + 2}{x^2 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 3x + 2}$  **D.**  $f(x) = \frac{x^2 + x 6}{2x^2 8}$
- **30.** Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .



- A.  $\frac{1}{\sqrt{3}}$  B.  $-\frac{1}{\sqrt{3}}$  C.  $-\frac{2}{\sqrt{3}}$  D.  $\frac{2}{\sqrt{3}}$

**31.** The given graph on the right shows the curve of the function fOn which interval is f' increasing ?



- **B.**  $]0,+\infty[$
- $[\mathbf{C}, \mathbf{C}, \mathbf{C$
- **32.**The result of  $\lim_{x \to -2} \frac{\frac{1}{1-x} \frac{1}{3}}{x+2}$  is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$ **33.**If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?
- **A.**  $x^2 2x$  **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$
- **D.**  $x^2 2x + 4$
- **34.**If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?
  - A. (f g' f' g)' = f' g'' f'' g'B. f g'' + f'' g = (f g)''C. (f' g')' = f'' g''D. (f g)'' = f g'' + 2f' g' + f'' g

- **35.**Use the given graph of the function y = f(x) on the right,
  - to determine the graph of the function y = -f(x-2)



- **36.** Find the result of  $\lim_{x\to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$ **A.** -3 **B.** 3 **C.**  $+\infty$
- **37.** Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$ .

- **D.** 0

- **38.**IF  $f(x) = 3ax^3 + 3$  is a function and f'(3) = -162, find the result of f(2).
- **B.** -51
- **C.** 51
  - **D.** -45
- **39.**If f(x) = 2x 4 and g(x) = 1 + 3x, find the value of x when f(x) = g(x).
  - **A.** x = -1 **B.** x = 1
- **C.** x = 5
  - **D.** x = -5
- **40.** Find the equation of the line that passes through the point (-4,1) and perpendicular to the y - axis . A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0
- **41.** Which of the following functions has a removable discontinuity at x = -3?
  - **A.**  $f(x) = \frac{x^2 9}{(x+3)^2}$  **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$

- **42.**Which of the following is true?
  - **A.**  $\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$  **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2 1}{x 1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$

- **43.**On which interval is the function  $f(x) = x^{\frac{2}{3}} 4$  decreasing?
  - **A.** ]  $-\infty$ , 0 [ **B.** ]  $-\infty$ , 4 [ **C.** ] 0,  $+\infty$ [
- **D.** None
- **44.**The result of  $\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$  is: **A.** 0 **B.**-1 **C.**-2
- **D.** Does not exist.
- **45.** Determine the graph of the function f(x) = 2 |x + 1| by using point plotting.









**46.**On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

$$A.] - 1,1[$$

- **A.**] -1, 1 [ **B.**]  $-\infty$ , -1[ **C.**] -1,  $+\infty$ [ **D.** None
- **47.**Redefine the function  $f(x) = \frac{\sqrt{2-x} \sqrt{x}}{x-1}$  to be continuous at x = 1.

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$



$$\mathbf{C}_{\bullet} g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq \\ 0 & x = \end{cases}$$

- **48.** The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases (18  $cm^2/min$ ), what is the length of the side of the cube?
  - $\mathbf{A}$ , 2 cm
- **B.** 4 cm **C.**  $2\sqrt{2}$  cm
- **D.** 8 *cm*

**49.** Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ 

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

**B.** 
$$f'''(x) = \frac{24}{x^4}$$

$$\frac{1}{4}$$
 C.

- **50.** Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function 
$$f(x) = \frac{-k}{x}$$
. **A.**  $k = 2$  **B.**  $k = -2$  **C.**  $k = 3$  **D.**  $k = -3$ 

**A.** 
$$k = 2$$

Kurdistan Region – Iraq SN: 30000006 In the Name of Allah Subject: Maths Time: 3:30 Hours High Committee for General Examinations General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Choose the correct option, two marks for each right answer

**1.** Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ .

Find  $\frac{dx}{dt}$  at x=2, by knowing that  $\frac{dy}{dt}=-3$ .

- A.  $\frac{1}{4}$  B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$

- 2. Which of the following functions has no vertical asymptote at x = 2?
- **A.**  $f(x) = \frac{x^2 4}{(x 2)^2}$  **B.**  $f(x) = \frac{x + 2}{x^2 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 3x + 2}$
- **D**  $f(x) = \frac{x^2 + x 6}{2x^2 9}$
- 3. If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) f(2)}{x 2}$ ?
- **A.**  $x^2 2x$  **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$

- **4.** Which of the following is true?
  - **A.**  $\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$  **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2-1}{x-1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$

- **5.** On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?
  - [A.] 1,1[
- **B.** ]  $-\infty$ , -1[ **C.**] -1,  $+\infty$ [ **D.** *None*

- **6.** The given graph on the right shows the curve of the function f On which interval is f' increasing?
  - $\mathbf{A} \cdot \mathbf{J} \infty \mathbf{J} \mathbf{0}$

- **B.**  $]0, +\infty[$
- C. ]  $-\infty$ ,0[ $\cup$ ]0,+ $\infty$ [
- $\mathbf{D}$ ,  $]-\infty$ ,  $+\infty$
- 7. Which of the following functions is symmetric with respect to the  $\nu$  axis?
- **A.**  $x^2y x^2 + 3y = 0$  **B.**  $y = \sqrt{x-4}$  **C.** y = |x+2| 2 **D.**  $x^2y x = 0$ **8.** The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is :

- **A.** 0 **B.**-4 **C.** 4
- **9.** Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....
  - **A.** Positive
- **B.** Negative
- **C.** Opposite
- **D.** None
- **10.** In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet What is the highest point the rocket can reach?
  - **A.** 404 ft
- **B.** 580 ft **C.** 606 ft **D.** 768 ft

- **11.** Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$ .
- A. -3
- **B.** 3
  - $\mathbf{C}.+\infty$  **D.** 0
- 12. Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

  - $\mathbf{A}.f(x) = \frac{2x}{3-x}$   $\mathbf{B}.f(x) = \frac{-2x^2+6x+1}{x-3}$   $\mathbf{C}.f(x) = \frac{-4x^2-18x}{2x-6}$   $\mathbf{D}.f(x) = \frac{-x^2+12x}{x-3}$

- **13.** The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain .

  - **A.** Increasing **B.** Decreasing **C.** Concave **D.** Convex

- **14.** Which of the following functions has a removable discontinuity at x = -3?

- **A.**  $f(x) = \frac{x^2 9}{(x+3)^2}$  **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$
- **15.**Redefine the function  $f(x) = \frac{\sqrt{2-x} \sqrt{x}}{x-1}$  to be continuous at x = 1.
  - $\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases} \qquad \mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$   $\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases} \qquad \mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$
- **16.**On which interval is the function  $f(x) = x^{\frac{2}{3}} 4$  decreasing?
  - **A.** ]  $-\infty$ , 0 [ **B.** ]  $-\infty$ , 4 [ **C.** ] 0,  $+\infty$ [
- **D.** None
- **17.**The result of  $\lim_{\Delta x \to 0} \frac{-3(x + \Delta x)^2 + 3x^2}{\Delta x}$  is: **A.**6*x* **B.**-6*x* **C.**3*x*<sup>2</sup> **D.** -3*x*<sup>2</sup>

- **18.** Find the value of **b** when the distance between the point (1, -3) and the line 3x by = 5 is (zero)

- **19.** For what value of  $\mathbf{a}$ , does the function  $f(x) = \begin{cases} \mathbf{a}x^2 + 1 & x \le 2 \\ 2x \mathbf{a} & x > 2 \end{cases}$  has no points of discontinuity?  $\mathbf{A} \cdot \frac{-3}{5} \qquad \mathbf{B} \cdot \frac{-5}{3} \qquad \mathbf{C} \cdot \frac{5}{3} \qquad \mathbf{D} \cdot \frac{3}{5}$

- **20.** The result of  $\lim_{x \to -2} \frac{\frac{1}{1-x} \frac{1}{3}}{x+2}$  is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$  **D.**  $\frac{1}{9}$

**21.** Use the given graph of the function y = f(x) on the right, to determine the graph of the function y = -f(x-2)



- **22.** Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

  - A. (1,0) B. (2,0) C. (0,0)
- **D.** None
- **23.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x 3x^2 + 1}{2x^2 + 5x}$ .
  - **A.** y = 1 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$  **D.** y = 0

- **24.** The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases  $(18 cm^2/min)$ , what is the length of the side of the cube?
  - **A.** 2 cm
- **B.** 4 cm **C.**  $2\sqrt{2}$  cm
- **D.** 8 cm
- **25.** Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the
  - function  $f(x) = \frac{-k}{x}$ . **A.** k = 2 **B.** k = -2 **C.** k = 3 **D.** k = -3

- **26.** Find the result of  $\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$ . **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$

**27.**If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?



B. 
$$fg'' + f''g = (fg)''$$

$$C.(f'g')' = f''g''$$
  $D.(fg)'' = fg'' + 2f'g' + f''g$ 

**28.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2, 2]$$

**A.** 
$$[-2,2]$$
 **B.**  $[0,2]$  **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.**  $[-2,0]$ 

**D.** 
$$[-2,0]$$

- **29.** The result of  $\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$  is: **A.** 0 **B.**-1 **C.**-2 **D.** Does not exist.

**30.** Determine the range of the function ffrom the given graph on the right.

$$A.[-2,2]$$

**B**. 
$$[-2, 1]$$

$$C.[-1,2]$$



**31.** Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.









- **32.** Find the result of  $\lim_{x \to 0} \frac{\frac{5}{2x+10} \frac{1}{2}}{x}$ . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$

- 33. Find the equation of the line that passes through the point (-4,1) and perpendicular to the y - axis . A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0

- **D.** y + 3 = 0
- **34.** The line y = -4x + 7 passes through which of the following points?

**A.** 
$$(5,-3)$$
 **B.**  $(-3,5)$ 

- C.(2,-1)
- $\mathbf{D}.(-1,2)$

**35.**Which of the following graphs represents a function?









**36.**IF  $f(x) = 3ax^3 + 3$  is a function and f'(3) = -162, find the result of f(2).

**B.** 
$$-51$$

- **C.** 51
- **37.** Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

**A.** 
$$\frac{1}{\sqrt{3}}$$
 **B.**  $-\frac{1}{\sqrt{3}}$  **C.**  $-\frac{2}{\sqrt{3}}$  **D.**  $\frac{2}{\sqrt{3}}$ 

- **38.**If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.** -2

**39.**Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph.

**A.** 
$$f(x) = \frac{x^2}{x^2 + 3}$$
 **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

$$\mathbf{B.}\,f(x) = \frac{x}{x^2 + 3}$$

$$\mathbf{C.}f(x) = \frac{x^2}{x^2 - 3}$$

C.
$$f(x) = \frac{x^2}{x^2 - 3}$$
 D.  $f(x) = \frac{x^2 - 1}{x^2 + 3}$ 



**40.** Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ .

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

$$\mathbf{B.}f'''(x) = \frac{24}{x^4}$$

C. 
$$f'''(x) = \frac{-96}{x^5}$$

**D.** 
$$f'''(x) = \frac{96}{x^5}$$

- **41.**Which of the following is false?
  - **A**. The graph of a cubic function has exactly one point of inflection.

**B**.If 
$$f'(x) = g'(x)$$
, then  $f(x) = g(x)$ 

**C**. If 
$$g(x) = -5f(x)$$
, then  $g'(x) = -5f'(x)$ 

**D**. If 
$$y = \frac{2x}{\pi}$$
, then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

**42.**Use the given graph on the right to find the result of  $\lim_{x\to 0^+} f(x)$ 





- **43.** Find the result of  $\lim_{x\to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$
- **44.** A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain (51200  $m^2$ ). What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**A.** 
$$256 m$$
,  $200 m$ 

**45.** The result of 
$$\lim_{x \to 3^{-}} \frac{2-x}{x-3}$$
 is: **A.**  $-\infty$  **B.**  $+\infty$  **C.** 0

$$A. -\infty B. +\infty$$

**C.** 0 **D.** 
$$-1$$

**46.** Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** 
$$x = -2$$

**B.** 
$$y = -2$$

**C.** 
$$y = -4$$

**D.** 
$$y = -2x - 8$$

**47.** The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?



**B.** 
$$\frac{2}{5}$$

**48.**If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

A. 
$$\frac{y+2x}{2y-x}$$
 B.  $\frac{2x}{2y-x}$  C.  $\frac{y-2x}{2y-x}$ 

$$\mathbf{B} \cdot \frac{2x}{2x}$$

C. 
$$\frac{y-2x}{2y-x}$$

**D.** 2

**D.** 
$$\frac{-2x}{2y-x}$$

**49.** Find the derivative of the function  $f(x) = x e^x$ .

**A.** 
$$f'(x) = e^x$$

$$C \cdot f'(x) = e^x + 1$$

**D.** 
$$f'(x) = xe^x + 1$$

**50.** If f(x) = 2x - 4 and g(x) = 1 + 3x, find the value of x when f(x) = g(x).

**A.** 
$$x = -1$$
 **B.**  $x = 1$  **C.**  $x = 5$ 

**B.** 
$$x = 1$$

**C.** 
$$x = 5$$

**D.** 
$$x = -5$$

Kurdistan Region – Iraq SN: 30000007 In the Name of Allah **Subject: Maths Time: 3:30 Hours** High Committee for General Examinations General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Choose the correct option, two marks for each right answer

1. The result of  $\lim_{x \to 3^-} \frac{2-x}{x-3}$  is: A.  $-\infty$  B.  $+\infty$  C. 0

**2.** Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)

A.  $\frac{3}{2}$  B.  $\frac{-3}{2}$  C.  $\frac{2}{3}$ 

3. Which of the following functions has a removable discontinuity at x = -3?

**A.**  $f(x) = \frac{x^2 - 9}{(x+3)^2}$  **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

**4.** The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases  $(18 \text{ cm}^2/\text{min})$ , what is the length of the side of the cube?

**A.** 2 cm

**B.** 4 *cm* **C.**  $2\sqrt{2}$  *cm* 

**D.** 8 cm

**5.** Which of the following is true?

**A.**  $\lim_{r \to +\infty} (2 + \frac{\sin x}{r}) = 2$ 

**B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2-1}{x-1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$ 

**6.** On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

**A.**] -1, 1 [ **B.**]  $-\infty$ , -1[ **C.**] -1,  $+\infty$ [ **D.** None

7. IF  $f(x) = 3ax^3 + 3$  is a function and f'(3) = -162, find the result of f(2).

**A.** 2 **B.** -51

**8.** Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function  $f(x) = \frac{-k}{x}$ . **A.** k = 2 **B.** k = -2 **C.** k = 3 **D.** k = -3

**9.** Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ .

Find  $\frac{dx}{dt}$  at x=2, by knowing that  $\frac{dy}{dt}=-3$ .

A.  $\frac{1}{4}$  B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

10. Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....

**A.** Positive

**B.** Negative

11. For what value of  $\mathbf{a}$ , does the function  $f(x) = \begin{cases} \mathbf{a}x^2 + 1 & x \le 2 \\ 2x - \mathbf{a} & x > 2 \end{cases}$  has no points

of discontinuity?

**A.**  $\frac{-3}{5}$  **B.**  $\frac{-5}{3}$  **C.**  $\frac{5}{3}$  **D**  $\frac{3}{5}$ 

12. Find the equation of the line that passes through the point (-4,1) and perpendicular to the y - axis . A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0

**13.**The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is : **A.** 0 **B.**-4 **C.** 4 **D.**  $\frac{4}{5}$  **14.**The result of  $\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2}$  is : **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$  **D.**  $\frac{1}{9}$ 

15. The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?

 $A.\frac{3}{5}$   $B.\frac{2}{5}$  C.1

**D.** 2

**16.** Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

A.(1,0)

B.(2,0)

C.(0,0)

**D.** None

17. Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph.

**A.**  $f(x) = \frac{x^2}{x^2 + 3}$  **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

**C.** $f(x) = \frac{x^2}{x^2 - 3}$  **D.**  $f(x) = \frac{x^2 - 1}{x^2 + 3}$ 



**18.** A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain  $(51200 \, m^2)$ . What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**A.**  $256 \, m$ ,  $200 \, m$ 

**B.** 400 m, 128 m **C.** 512 m, 100 m

**D.** 320 m, 160 m

**19.**On which interval is the function  $f(x) = x^{\frac{2}{3}} - 4$  decreasing?

 $[A.] - \infty, 0[$   $[B.] - \infty, 4[$   $[C.] 0, +\infty[$ 

**D.** None

**20.** Find the result of  $\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$ . **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$ 

**21.** In a fireworks festival, a rocket is launched upward . The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet What is the highest point the rocket can reach?

**A.** 404 ft

**B.** 580 ft **C.** 606 ft **D.** 768 ft

**22.** Which of the following functions is symmetric with respect to the y - axis?

**A.**  $x^2y - x^2 + 3y = 0$  **B.**  $y = \sqrt{x-4}$  **C.** y = |x+2| - 2 **D.**  $x^2y - x = 0$ 

**23.**If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?

C.(f'g')' = f''g''

A. (f g' - f'g)' = f'g'' - f''g' B. fg'' + f''g = (f g)''D. (f g)'' = f g'' + 2f'g' + f''g

**24.**Use the given graph of the function y = f(x) on the right, to determine the graph of the function y = -f(x-2)

**25.** Which of the following functions has no vertical asymptote at x = 2?

**A.** 
$$f(x) = \frac{x^2-4}{(x-2)^2}$$

**A.**  $f(x) = \frac{x^2 - 4}{(x - 2)^2}$  **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$  **D.**  $f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$ 

**26.** Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

$$\mathbf{A.}f(x) = \frac{2x}{3-x}$$

**A.**  $f(x) = \frac{2x}{3-x}$  **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

27. Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** 
$$x = -2$$

**B.** y = -2

**C.** y = -4

**D.** y = -2x - 8

**28.** If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

**A.** 
$$x^2 - 2x$$

**A.**  $x^2 - 2x$  **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$ 

**29.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2, 2]$$

**B.** [0,2] **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.** [-2,0]

**30.**Determine the range of the function f

from the given graph on the right.

$$A.[-2,2]$$

$$C.[-1,2]$$



**31.**Use the given graph on the right

**A**. 0

 $\mathbf{A.6}x \qquad \mathbf{B.-6}x$ 



**32.**The result of  $\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$  is: **A.** 0 **B.**-1 **C.**-2

**C.** $3x^2$  **D.**  $-3x^2$ 

33. The result of  $\lim_{\Delta x \to 0} \frac{-3(x+\Delta x)^2+3x^2}{\Delta x}$  is: **34.**If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

A. 
$$\frac{y+2x}{2y-x}$$
 B.  $\frac{2x}{2y-x}$  C.  $\frac{y-2x}{2y-x}$ 

**35.** Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ 

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

**36.** The given graph on the right shows the curve of the function fOn which interval is f' increasing?



**B.**  $]0,+\infty[$ 

C. 
$$]-\infty$$
,  $0[\cup]0$ ,  $+\infty[$ 
D.  $]-\infty$ ,  $+\infty[$ 



**37.**Find the derivative of the function  $f(x) = x e^x$ .

$$\mathbf{A.}\,f'(x)=e^x$$

$$\mathbf{B.}\,f'(x)=e^x(x+1)$$

$$C.f'(x) = e^x + 1$$

**D.** 
$$f'(x) = xe^x + 1$$

**38.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ .

**A.** 
$$y = 1$$

**A.** y = 1 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$  **D.** y = 0

**39.** Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$ . **A.** -3 **B.** 3 **C.** + $\infty$  **D.** 0

**40.** Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.









**41.** The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain .

**A.** Increasing

**D.** Convex **B.** Decreasing **C.** Concave

**42.** Find the result of  $\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$ 

**43.**The line y = -4x + 7 passes through which of the following points?

**A.** 
$$(5, -3)$$
 **B.**  $(-3, 5)$ 

C.(2,-1)

 $\mathbf{D} \cdot (-1,2)$ 

**44.**If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.** -2

**45.**Which of the following is false?

**A**. The graph of a cubic function has exactly one point of inflection.

**B**.If f'(x) = g'(x), then f(x) = g(x)

**C**. If g(x) = -5f(x), then g'(x) = -5f'(x)

**D**. If  $y = \frac{2x}{\pi}$ , then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

**46.**Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ -1 & x = 1 \end{cases}$$

**47.**Which of the following graphs represents a function?



**48.** Find the result of  $\lim_{x \to 0} \frac{\frac{5}{2x+10} - \frac{1}{2}}{x}$ . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$ 

**49.**If f(x) = 2x - 4 and g(x) = 1 + 3x, find the value of x when f(x) = g(x).

**A.** 
$$x = -1$$
 **B.**  $x = 1$ 

**C.** x = 5

**50.** Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

**A.** 
$$\frac{1}{\sqrt{3}}$$

A.  $\frac{1}{\sqrt{3}}$  B.  $-\frac{1}{\sqrt{3}}$  C.  $-\frac{2}{\sqrt{3}}$  D.  $\frac{2}{\sqrt{3}}$ 

Kurdistan Region – Iraq SN: 30000008 In the Name of Allah **High Committee for General Examinations** 

Subject: Maths Time: 3:30 Hours

General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Choose the correct option, two marks for each right answer

1. If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : A.  $2\pi$  B.  $-2\pi$  C. 2 D. -2

2. Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

**A.**  $\frac{1}{\sqrt{2}}$  **B.**  $-\frac{1}{\sqrt{2}}$  **C.**  $-\frac{2}{\sqrt{2}}$  **D.**  $\frac{2}{\sqrt{2}}$ 

**3.** Find the result of  $\lim_{x\to 0} \frac{\frac{5}{2x+10}-\frac{1}{2}}{x}$ . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$  **D.** 0

**4.** Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.









5. Find the equation of the line that passes through the point (-4,1) and perpendicular to the y - axis . A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0**D.** v + 3 = 0

**6.** The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?



**7.** Find the result of  $\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$ . **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$ 

A. $\frac{3}{5}$  B. $\frac{2}{5}$  C.1

**D.** 2

**8.** Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph.

**A.** 
$$f(x) = \frac{x^2}{x^2 + 3}$$
 **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

$$\mathbf{B.}\,f(x) = \frac{x}{x^2 + 3}$$

$$\mathbf{C.}f(x) = \frac{x^2}{x^2 - 3}$$

$$\mathbf{C.}f(x) = \frac{x^2}{x^2 - 3}$$
  $\mathbf{D.} f(x) = \frac{x^2 - 1}{x^2 + 3}$ 



9. For what value of  $\mathbf{a}$ , does the function  $f(x) = \begin{cases} \mathbf{a}x^2 + 1 & x \le 2 \\ 2x - \mathbf{a} & x > 2 \end{cases}$ has no points **A.**  $\frac{-3}{5}$  **B.**  $\frac{-5}{3}$  **C.**  $\frac{5}{3}$ of discontinuity?

10.IF  $f(x) = 3ax^3 + 3$  is a function and f'(3) = -162, find the result of f(2).

**B.** -51**C.** 51

**11.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2,2]$$

**A.** [-2,2] **B.** [0,2] **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.** [-2,0]

12. The result of  $\lim_{x\to 3^-} \frac{2-x}{x-3}$  is: A.  $-\infty$  B.  $+\infty$  C. 0

**D.** -1

13. In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet What is the highest point the rocket can reach?

**B.** 580 ft **C.** 606 ft **D.** 768 ft

**14.**The result of 
$$\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2}$$
 is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$ 

**15.**Which of the following graphs represents a function?



**16.** Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....

**B.** Negative

C. Opposite

**D.** None

**17.** Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)

**A.** 
$$\frac{3}{2}$$
 **B.**  $\frac{-3}{2}$ 

 $C.\frac{2}{a}$ 

**18.** The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain .

**A.** Increasing

**B.** Decreasing **C.** Concave

**D.** Convex

**19.** The given graph on the right shows the curve of the function f On which interval is f' increasing?

$$\mathbf{A}$$
.  $]-\infty$ ,  $0$ 

**B.**  $]0, +\infty[$ 

$$[\mathbf{C}, ] - \infty, 0[ \cup ]0, +\infty[$$
  $[\mathbf{D}, ] - \infty, +\infty[$ 



**20.** The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is :

**21.** Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$ .

A. -3

**B.** 3

**D.** 0

**22.**If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?

A. 
$$(f g' - f'g)' = f'g'' - f''g'$$
  
B.  $fg'' + f''g = (f g)''$   
C.  $(f'g')' = f''g''$   
D.  $(f g)'' = f g'' + 2f'g'$ 

D. (f g)'' = f g'' + 2f'g' + f''g

23. Find the result of  $\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): A. 0 B. 1 C.  $\frac{1}{4}$  D.  $+\infty$ 

**24.**The result of  $\lim_{\Delta x \to 0} \frac{-3(x+\Delta x)^2+3x^2}{\Delta x}$  is:

**A.**6*x* **B.**-6*x* **C.**3 $x^2$  **D.** -3 $x^2$ 

**25.** Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ .

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$

**A.**  $f'''(x) = \frac{-24}{x^4}$  **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

**26.**On which interval is the function  $f(x) = x^{\frac{2}{3}} - 4$  decreasing?

$$\mathbf{A.}\,]-\infty$$
 ,  $0\,[$ 

**B.** ]  $-\infty$ , 4 [ **C.** ] 0,  $+\infty$ [

**D.** None

**27.** The result of  $\lim_{r\to 0} \frac{-x}{\sqrt{x+1}-1}$  is: **A.** 0 **B.** -1 **C.** -2

**D.** Does not exist.

**28.** The line y = -4x + 7 passes through which of the following points?

**A.** 
$$(5, -3)$$
 **B.**  $(-3, 5)$ 

**B.** 
$$(-3, 5)$$

$$C.(2,-1)$$

$$\mathbf{D} \cdot (-1,2)$$

**29.** Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

$$\mathbf{A.}f(x) = \frac{2x}{3-x}$$

**A.** 
$$f(x) = \frac{2x}{3-x}$$
 **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

$$\mathbf{C.}\,f(x) = \frac{-4x^2 - 18x}{2x - 6}$$

**D.** 
$$f(x) = \frac{-x^2 + 12x}{x - 3}$$

**30.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ .

**A.** 
$$y = 1$$

**B.** 
$$y = \frac{-3}{2}$$

**A.** 
$$y = 1$$
 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$  **D.**  $y = 0$ 

**D.** 
$$y = 0$$

**31.** Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** 
$$x = -2$$

**B.** 
$$y = -2$$

C. 
$$y = -4$$

**D.** 
$$y = -2x - 8$$

**32.**Which of the following is false?

**A**. The graph of a cubic function has exactly one point of inflection.

**B**.If 
$$f'(x) = g'(x)$$
, then  $f(x) = g(x)$ 

**C**. If 
$$g(x) = -5f(x)$$
, then  $g'(x) = -5f'(x)$ 

**D**. If 
$$y = \frac{2x}{\pi}$$
, then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

**33.**Which of the following is true?

**A.** 
$$\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$$
 **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2-1}{x-1} = 0$ 

**B.** 
$$\lim_{x\to 2} \frac{3}{x-2} = 3$$

3 
$$\mathbf{C}$$
.  $\lim_{x\to 1} \frac{1}{x}$ 

**D.** 
$$\lim_{x\to 0} \frac{\sin x}{x} =$$

**34.** The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases  $(18 \text{ cm}^2/\text{min})$ , what is the length of the side of the cube?

**B.** 4 *cm* **C.** 
$$2\sqrt{2}$$
 *cm*

**35.**On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

$$[A.] - 1,1[$$

**A.**] 
$$-1$$
, 1 [ **B.**]  $-\infty$ ,  $-1$ [ **C.**]  $-1$ ,  $+\infty$ [ **D.** None

$$\mathbf{C.}] - 1, +\infty[$$
 **I**

**36.**Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases} \qquad \mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x \neq 1 \end{cases} \qquad \mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x \neq 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

**D.** 
$$g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ & \end{cases}$$

**37.** Use the given graph of the function y = f(x) on the right, to determine the graph of the function y = -f(x-2)



**38.**If f(x) = 2x - 4 and g(x) = 1 + 3x, find the value of x when f(x) = g(x).

**A.** 
$$x = -1$$
 **B.**  $x = 1$ 

**B.** 
$$x = 1$$

**C.** 
$$x = 5$$

**D.** 
$$x = -5$$

**39.**If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

**A.** 
$$x^2 - 2x$$
 **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$ 

**B.** 
$$x^2 + 2x$$

C. 
$$x^2 + 2x + 4$$

**D.** 
$$x^2 - 2x + 4$$

**40.** Which of the following functions has no vertical asymptote at x = 2?

**A.** 
$$f(x) = \frac{x^2 - 4}{(x - 2)^2}$$
 **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$  **D.**  $f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$ 

**B.** 
$$f(x) = \frac{x+2}{x^2-4}$$

C. 
$$f(x) = \frac{x^2+4}{x^2-3x+2}$$

$$\mathbf{D} \cdot f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$$

**41.** Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ .

Find 
$$\frac{dx}{dt}$$
 at  $x = 2$ , by knowing that  $\frac{dy}{dt} = -3$ .

A. 
$$\frac{1}{4}$$
 B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

**B.** 
$$\frac{-1}{4}$$

**42.** Which of the following functions is symmetric with respect to the y - axis?

**A.** 
$$x^2y - x^2 + 3y = 0$$
 **B.**  $y = \sqrt{x-4}$  **C.**  $y = |x+2| - 2$  **D.**  $x^2y - x = 0$ 

**B.** 
$$y = \sqrt{x - x}$$

$$C.y = |x + 2| - 2$$

$$\mathbf{D.} \ x^2 y - x = 0$$

**43.**If 
$$x^2 - xy + y^2 = 1$$
 then which of the following is equal to  $\frac{dy}{dx}$ ?

**A.** 
$$\frac{y+2x}{2y-x}$$
 **B.**  $\frac{2x}{2y-x}$  **C.**  $\frac{y-2x}{2y-x}$  **D.**  $\frac{-2x}{2y-x}$ 

$$\mathbf{B}.\frac{2x}{2y-x}$$

C. 
$$\frac{y-2x}{2y-x}$$

**1.** 
$$\frac{-2x}{2y-x}$$

**44.**Use the given graph on the right





**45.** Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

**A.** 
$$(1,0)$$
 **B.**  $(2,0)$  **C.**  $(0,0)$ 

**D.** None

**46.** Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function 
$$f(x) = \frac{-k}{x}$$
. **A.**  $k = 2$  **B.**  $k = -2$  **C.**  $k = 3$ 

**A.** 
$$k = 2$$

**B.** 
$$k = -2$$

**C.** 
$$k = 3$$

**D.** k = -3

**47.** Which of the following functions has a removable discontinuity at x = -3?

**A.** 
$$f(x) = \frac{x^2 - 9}{(x+3)^2}$$
 **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

**B.** 
$$f(x) = \frac{x^3+2}{2x+6}$$

C. 
$$f(x) = \frac{x^2 + x^2}{x + 3}$$

**D.** 
$$f(x) = \frac{|x+3|}{2x+6}$$

**48.** Determine the range of the function f

from the given graph on the right.

$$A.[-2,2]$$

$$B.[-2,1]$$

$$-1,2$$
 **D**. [0,



**49.** A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain (51200  $m^2$ ). What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**A.** 256 m, 200 m **B.** 400 m, 128 m **C.** 512 **50.**Find the derivative of the function 
$$f(x) = x e^x$$
.

$$C.f'(x) = e^x +$$

**A.** 
$$f'(x) = e^x$$
 **B.**  $f'(x) = e^x(x+1)$  **C.**  $f'(x) = e^x + 1$  **D.**  $f'(x) = xe^x + 1$ 

Kurdistan Region – Iraq SN: 30000009 In the Name of Allah **High Committee for General Examinations** 

Name: \_ \_ \_ \_

Subject: Maths Time: 3:30 Hours

General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Choose the correct option, two marks for each right answer

**1.** Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)

A. 
$$\frac{3}{2}$$
 B.  $\frac{-3}{2}$  C.  $\frac{2}{3}$ 

**B.** 
$$\frac{-3}{2}$$

$$C.\frac{2}{3}$$

**D.** 
$$\frac{-2}{3}$$

2. Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

**A.** 
$$\frac{1}{\sqrt{3}}$$

**A.** 
$$\frac{1}{\sqrt{3}}$$
 **B.**  $-\frac{1}{\sqrt{3}}$  **C.**  $-\frac{2}{\sqrt{3}}$  **D.**  $\frac{2}{\sqrt{3}}$ 

$$\mathbf{D.} \quad \frac{2}{\sqrt{s}}$$

**3.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2,2]$$

**B.** 
$$[0,2]$$
 **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.**  $[-2,0]$ 

**D.** 
$$[-2,0]$$

**4.** Which of the following graphs represents a function?



5. The given graph on the right shows the curve of the function f On which interval is f' increasing?



**B.** 
$$]0,+\infty[$$

$$\mathbf{C}.] - \infty ,0[\cup]0 ,+\infty[$$

$$\mathbf{D}$$
.  $]-\infty$ ,  $+\infty$ 

- **6.** Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

- **B.** (2,0)
- C.(0,0)
- **D.** None
- 7. If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : A.  $2\pi$  B.  $-2\pi$ C.2 D.-2
- **8.** Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph

**A.** 
$$f(x) = \frac{x^2}{x^2 + 3}$$
 **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

**B.** 
$$f(x) = \frac{x}{x^2 + 3}$$

$$\mathbf{C.}f(x) = \frac{x^2}{x^2 - 3}$$

**C.**
$$f(x) = \frac{x^2}{x^2 - 3}$$
 **D.**  $f(x) = \frac{x^2 - 1}{x^2 + 3}$ 



**9.** The line y = -4x + 7 passes through which of the following points?

**A.** 
$$(5, -3)$$

$$B.(-3,5)$$

**A.** 
$$(5,-3)$$
 **B.**  $(-3,5)$  **C.**  $(2,-1)$ 

$$\mathbf{D} \cdot (-1, 2)$$

**10.**On which interval is the function  $f(x) = x^{\frac{2}{3}} - 4$  decreasing?

**A.** ] 
$$-\infty$$
, 0 [ **B.** ]  $-\infty$ , 4 [ **C.** ] 0,  $+\infty$ [

$$\mathbf{B.}] - \infty$$
,4|

$$\mathbf{C}$$
.  $]0,+\infty[$ 

- 11. The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain .
  - **A.** Increasing
- **B.** Decreasing **C.** Concave
- **D.** Convex

**12.**Use the given graph of the function y = f(x) on the right, to determine the graph of the function y = -f(x-2)



**13.**On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

$$[A.] - 1,1[$$

$$\mathbf{B}$$
.  $]-\infty$ ,  $-1$ 

**A.**] 
$$-1$$
, 1 [ **B.**]  $-\infty$ ,  $-1$ [ **C.**]  $-1$ ,  $+\infty$ [ **D.** None

**14.** Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....

 $\mathbf{A.6}x$ 

**B.**
$$-6x$$
 **C.** $3x^2$  **D.**  $-3x^2$ 

15. The result of  $\lim_{\Delta x \to 0} \frac{-3(x+\Delta x)^2+3x^2}{\Delta x}$  is:

**16.**Which of the following is true?

C. 
$$\lim \frac{x^2-1}{x^2} = 0$$

- **A.**  $\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$  **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2-1}{x-1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$
- 17. Determine the graph of the function f(x) = 2 |x + 1| by using point plotting.



18. A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain  $(51200 \, m^2)$ . What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**19.** Determine the range of the function *f* from the given graph on the right.

$$A.[-2,2]$$

$$B.[-2,1]$$

$$C.[-1,2]$$
 **D**. [0,2]

$$\mathbf{D}$$
. [0,2]



**20.** Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** 
$$x = -2$$

**B.** 
$$y = -2$$

**A.** 
$$x = -2$$
 **B.**  $y = -2$  **C.**  $y = -4$  **21.** The result of  $\lim_{x \to 0} \frac{-x}{\sqrt{x+1}-1}$  is: **A.** 0 **B.**  $-1$  **C**

$$\mathbf{C}.\mathbf{-2}$$

**D.** y = -2x - 8

22. Use the given graph on the right to find the result of  $\lim_{x\to 0^+} f(x)$ 



**D.** Does not exist.



**23.** Find the derivative of the function  $f(x) = x e^x$ .

**A.** 
$$f'(x) = e^x$$

**B.** 
$$f'(x) = e^x(x+1)$$
 **C.**  $f'(x) = e^x + 1$ 

$$C \cdot f'(x) = e^x + 1$$

**D.** 
$$f'(x) = xe^x + 1$$

**24.** For what value of  $\mathbf{a}$ , does the function  $f(x) = \begin{cases} \mathbf{a}x^2 + 1 & x \le 2 \\ 2x - \mathbf{a} & x > 2 \end{cases}$  has no points of discontinuity?  $\mathbf{A} \cdot \frac{-3}{5} \quad \mathbf{B} \cdot \frac{-5}{3} \quad \mathbf{C} \cdot \frac{5}{3} \quad \mathbf{D} \cdot \frac{3}{5}$ 

$$A_{\cdot} \frac{-3}{5}$$

**B.** 
$$\frac{-5}{3}$$

$$C.\frac{5}{3} \qquad \mathbf{D}$$

**25.**Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at v = -2x?

$$\mathbf{A.}f(x) = \frac{2x}{3-x}$$

**B.** 
$$f(x) = \frac{-2x^2 + 6x + 1}{x^2 + 6x + 1}$$

**A.** 
$$f(x) = \frac{2x}{3-x}$$
 **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

**D.** 
$$f(x) = \frac{-x^2 + 12x}{x - 3}$$

**26.** Find the result of 
$$\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$$
. **A.** -3 **B.** 3 **C.** + $\infty$  **D.** 0

ult of 
$$\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$$
.

$$A. -3$$

**27.** Which of the following functions has a removable discontinuity at x = -3?

**A.** 
$$f(x) = \frac{x^2 - 9}{(x+3)^2}$$
 **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

**B.** 
$$f(x) = \frac{x^3 + 27}{2x + 6}$$

C. 
$$f(x) = \frac{x^2+9}{x+3}$$

**D.** 
$$f(x) = \frac{|x+3|}{2x+6}$$

**28.** Find the result of  $\lim_{r \to 0} \frac{\frac{5}{2x+10} - \frac{1}{2}}{r}$ . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$  **D.** 0

$$\lim_{x \to 0} \frac{\frac{5}{2x+10} - \frac{1}{2}}{x} \quad . \quad A. \frac{5}{2}$$

**B**. 
$$-\frac{1}{20}$$

$$\frac{10}{10}$$

**29.**The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is : **A.** 0 **B.**-4 **C.** 4

**D.** 
$$\frac{4}{5}$$

**30.** Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function 
$$f(x) = \frac{-k}{x}$$
. **A.**  $k = 2$  **B.**  $k = -2$  **C.**  $k = 3$  **D.**  $k = -3$ 

$$\mathbf{A.}\,k=2$$

**B.** 
$$k = -2$$

**C.** 
$$k = 3$$

**D.** 
$$k = -$$

**31.**The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?



$$\mathbf{B} \cdot \frac{2}{5}$$



**32.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ .

**A.** 
$$y = 1$$

**B.** 
$$y = \frac{-3}{2}$$

**A.** 
$$y = 1$$
 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$  **D.**  $y = 0$ 

**D.** 
$$y =$$

33. The result of  $\lim_{x\to 3^-} \frac{2-x}{x-3}$  is: A.  $-\infty$  B.  $+\infty$  C. 0

$$A. -\infty B. +\infty$$

**34.**If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?

A. 
$$(f g' - f'g)' = f'g'' - f''g'$$
 B.  $fg'' + f''g = (f g)''$ 

B. 
$$fg'' + f''g = (fg)''$$

$$C.(f'g')' = f''g''$$

$$D.(fg)'' = fg'' + 2f'g' + f''g$$

**35.** Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ .

Find  $\frac{dx}{dt}$  at x=2, by knowing that  $\frac{dy}{dt}=-3$ .

$$A.\frac{1}{4}$$

**B.** 
$$\frac{-1}{4}$$

$$C.\frac{1}{2}$$

A. 
$$\frac{1}{4}$$
 B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

**36.**If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

**A.** 
$$\frac{y+2x}{2y-x}$$
 **B.**  $\frac{2x}{2y-x}$  **C.**  $\frac{y-2x}{2y-x}$ 

$$\mathbf{B}.\frac{2x}{2y-x}$$

C. 
$$\frac{y-2x}{2y-x}$$

**D.** 
$$\frac{-2x}{2y-x}$$

**37.** Which of the following functions has no vertical asymptote at x = 2?

**A.** 
$$f(x) = \frac{x^2 - 4}{(x - 2)^2}$$
 **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$  **D.**  $f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$ 

**B.** 
$$f(x) = \frac{x}{x}$$

$$-3x+2$$

**D** 
$$f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$$

**38.**Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ -1 & x = 1 \end{cases}$$

**39.** If f(x) = 2x - 4 and g(x) = 1 + 3x, find the value of x when f(x) = g(x).

**A.** 
$$x = -1$$
 **B.**  $x = 1$  **C.**  $x = 5$ 

**40.** Find the equation of the line that passes through the point 
$$(-4, 1)$$
 and perpendicular to the  $y$  – axis . **A.**  $x + 4 = 0$  **B.**  $y - 4x = 0$  **C.**  $y - 1 = 0$  **D.**  $y + 3 = 0$ 

**41.** In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet

What is the highest point the rocket can reach?

**42.**IF 
$$f(x) = 3ax^3 + 3$$
 is a function and  $f'(3) = -162$ , find the result of  $f(2)$ .

$$B_{1} - 51$$

**D.** x = -5

**43.** Find the result of  $\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$ 

**44.** Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ .

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

**B.**
$$f'''(x) = \frac{24}{x^4}$$

$$C. f^{-1}(x) = \frac{1}{x^5}$$

**D.** 
$$f'''(x) = \frac{1}{x^2}$$

**45.** Find the result of 
$$\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$$
. **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$ 

**B**.If 
$$f'(x) = g'(x)$$
, then  $f(x) = g(x)$ 

**C**. If 
$$g(x) = -5f(x)$$
, then  $g'(x) = -5f'(x)$ 

**D**. If 
$$y = \frac{2x}{\pi}$$
, then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

**47.** Which of the following functions is symmetric with respect to the y - axis?

**A.** 
$$x^2y - x^2 + 3y = 0$$
 **B.**  $y = \sqrt{x-4}$  **C.**  $y = |x+2| - 2$  **D.**  $x^2y - x = 0$ 

$$\mathbf{B.}\ y = \sqrt{x} -$$

**48.** The result of 
$$\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2}$$
 is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$  **D.**  $\frac{1}{9}$ 

**D.** 
$$\frac{1}{9}$$

**49.** The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases (18  $cm^2/min$ ), what is the length of the side of the cube?

**B.** 4 *cm* **C.** 
$$2\sqrt{2}$$
 *cm*

**50.**If 
$$f(x) = x^3$$
 then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

**A.**  $x^2 - 2x$ 
**B.**  $x^2 + 2x$ 
**C.**  $x^2 + 2x + 4$ 
**D.**  $x^2 - 2x + 4$ 

A. 
$$x^2 - 2x$$

**B.** 
$$x^2 + 2x$$

C. 
$$x^2 + 2x + 4$$

**D.** 
$$x^2 - 2x + 4$$

Kurdistan Region – Iraq SN: 30000010 In the Name of Allah

High Committee for General Examinations

Subject: Maths Time: 3:30 Hours

General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Choose the correct option, two marks for each right answer

1. If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

A.  $\frac{y+2x}{2y-x}$  B.  $\frac{2x}{2y-x}$  C.  $\frac{y-2x}{2y-x}$ 

2. If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?

A. (f g' - f'g)' = f'g'' - f''g'B. fg'' + f''g = (f g)''

C.(f'g')' = f''g''

D. (f g)'' = f g'' + 2f'g' + f''g

3. If f(x) = 2x - 4 and g(x) = 1 + 3x, find the value of x when f(x) = g(x).

**A.** x = -1 **B.** x = 1

**C.** x = 5

**D.** x = -5

**4.** Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.

 $\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases} \qquad \mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$   $\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x \neq 1 \end{cases} \qquad \mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x \neq 1 \end{cases}$ 

5. On which interval is the function  $f(x) = x^{\frac{1}{3}} - 4$  decreasing?

 $\mathbf{A} \cdot \mathbf{I} - \infty \cdot 0$ 

**B.** ]  $-\infty$ , 4 [ **C.** ] 0,  $+\infty$ [

**D.** None

**6.** Find the result of  $\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$ 

7. The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?

 $A.\frac{3}{5}$   $B.\frac{2}{5}$  C.1 D. 2

**8.** Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the function  $f(x) = \frac{-k}{x}$ . **A.** k = 2 **B.** k = -2 **C.** k = 3**D.** k = -3

9. IF  $f(x) = 3ax^3 + 3$  is a function and f'(3) = -162, find the result of f(2).

**A.** 2

**B.** -51

**C.** 51

**D.** -45

**10.** The line y = -4x + 7 passes through which of the following points?

**A.** (5,-3) **B.** (-3,5) **C.** (2,-1) **D.** (-1,2)

**11.**Which of the following is true?

**A.**  $\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$  **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^{2-1}}{x-1} = 0$ 

**12.** Find the result of  $\lim_{x \to 0} \frac{\frac{5}{2x+10} - \frac{1}{2}}{x}$ . A.  $\frac{5}{2}$  B.  $-\frac{1}{20}$  C.  $-\frac{1}{10}$ 

**13.** For what value of  $\mathbf{a}$ , does the function  $f(x) = \begin{cases} \mathbf{a}x^2 + 1 & x \leq 2 \\ 2x - \mathbf{a} & x > 2 \end{cases}$  has no points A.  $\frac{-3}{5}$  B.  $\frac{-5}{3}$  C.  $\frac{5}{3}$  D.  $\frac{3}{5}$ of discontinuity?

**14.** Find the derivative of the function  $f(x) = x e^x$ .

**A.**  $f'(x) = e^x$ 

**B.**  $f'(x) = e^x(x+1)$ 

 $C_{\cdot}f'(x) = e^x + 1$ 

**D.**  $f'(x) = xe^x + 1$ 

**15.**If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.** -2

**16.** Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.









17. The result of  $\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$  is:

**A.** 0 **B.**−1

**D.** Does not exist.

**18.** Determine the range of the function *f* from the given graph on the right.



**19.**Which of the following graphs represents a function?



**20.** Which of the following functions is symmetric with respect to the y - axis?

**A.**  $x^2y - x^2 + 3y = 0$  **B.**  $y = \sqrt{x-4}$  **C.** y = |x+2| - 2 **D.**  $x^2y - x = 0$ 

**21.**The result of  $\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{2}{3}}{x+2}$  is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$  **D.**  $\frac{1}{9}$ 

**22.** Which of the following functions has a removable discontinuity at x = -3?

**A.**  $f(x) = \frac{x^2 - 9}{(x+3)^2}$  **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

**23.** Which of the following functions has no vertical asymptote at x = 2?

**A.**  $f(x) = \frac{x^2 - 4}{(x - 2)^2}$  **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$  **D.**  $f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$ 

**24.** A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain (51200  $m^2$ ). What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**A.** 256 m, 200 m

**B.** 400 m, 128 m **C.** 512 m, 100 m

**25.** Find the result of  $\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$ . **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$ 

**D.** 320 m . 160 m







**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

**B.** 
$$f'''(x) = \frac{24}{x^2}$$

C. 
$$f'''(x) = \frac{-96}{x^5}$$

**D.** 
$$f'''(x) = \frac{96}{x^5}$$

**28.** Find the result of 
$$\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$$
. **A.** -3 **B.** 3 **C.** + $\infty$  **D.** 0

f 
$$\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$$
.

$$A. -3$$

**29.**On which interval is the function 
$$f(x) = \frac{x-1}{x+1}$$
 convex ?

$$[A.] - 1,1[$$

**A.**] 
$$-1$$
, 1 [ **B.**]  $-\infty$ ,  $-1$ [ **C.**]  $-1$ ,  $+\infty$ [ **D.** None

**30.** Determine the equation of the horizontal asymptote of the function 
$$f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$$
.

**A.** 
$$y = 1$$

**B.** 
$$y = \frac{-3}{2}$$

**A.** 
$$y = 1$$
 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$ 

**D.** 
$$y = 0$$

- **31.** Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....
  - **A.** Positive
- **B.** Negative

**32.** The given graph on the right shows the curve of the function f

- C. Opposite
- **D.** None



 $A. ] - \infty , 0[$ 

- **B.**  $]0, +\infty[$
- $[C.] \infty$ ,  $[0] \cup [0]$ ,  $+\infty[$

On which interval is f' increasing?

- $\mathbf{D}$ .  $]-\infty$ ,  $+\infty$
- 33. Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph.

$$\mathbf{A.}\,f(x) = \frac{x^2}{x^2 + 3}$$

**A.** 
$$f(x) = \frac{x^2}{x^2 + 3}$$
 **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

$$\mathbf{C.}f(x) = \frac{x^2}{x^2 - 3}$$

**C.**
$$f(x) = \frac{x^2}{x^2 - 3}$$
 **D.**  $f(x) = \frac{x^2 - 1}{x^2 + 3}$ 



**34.** Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

$$\mathbf{A.}f(x) = \frac{2x}{3-x}$$

**B.** 
$$f(x) = \frac{-2x^2 + 6x}{x - 3}$$

$$\mathbf{C.}\,f(x) = \frac{-4x^2 - 18x}{2x - 6}$$

**A.** 
$$f(x) = \frac{2x}{3-x}$$
 **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

**35.** Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

**A.** 
$$\frac{1}{\sqrt{3}}$$
 **B.**  $-\frac{1}{\sqrt{3}}$  **C.**  $-\frac{2}{\sqrt{3}}$  **D.**  $\frac{2}{\sqrt{3}}$ 

**36.** Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)

**A.** 
$$\frac{3}{2}$$

**A.** 
$$\frac{3}{2}$$
 **B.**  $\frac{-3}{2}$  **C.**  $\frac{2}{3}$  **D.**  $\frac{-2}{3}$ 

$$C.\frac{2}{3}$$

**37.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2.2]$$

**A.** 
$$[-2,2]$$
 **B.**  $[0,2]$  **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.**  $[-2,0]$ 

**38.** Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ .

Find  $\frac{dx}{dt}$  at x=2, by knowing that  $\frac{dy}{dt}=-3$ .

$$A.\frac{1}{4}$$

A. 
$$\frac{1}{4}$$
 B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

- **39.** The result of  $\lim_{x \to 3^{-}} \frac{2-x}{x-3}$  is: A.  $-\infty$  B.  $+\infty$  C. 0 D. -1 **40.** The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is: A. 0 B. -4 C. 4
- **41.** Find the equation of the line that passes through the point (-4,1) and perpendicular to
- the y axis . A. x + 4 = 0 B. y 4x = 0 C. y 1 = 0
- **42.** Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** 
$$x = -2$$

**B.** 
$$v = -2$$

C. 
$$y = -4$$

**B.** 
$$y = -2$$
 **C.**  $y = -4$  **D.**  $y = -2x - 8$ 

43. In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet

What is the highest point the rocket can reach?

**44.**Use the given graph on the right to find the result of  $\lim_{x\to 0^+} f(x)$ 

**A**. 0 **B**. 
$$-1$$



**45.** Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

- **B.** (2,0)
- C.(0,0)
- **D.** None
- **46.** The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases  $(18 cm^2/min)$ , what is the length of the side of the cube?

- **B.** 4 cm
- - C.  $2\sqrt{2}$  cm **D.** 8 cm
- **47.** The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain .
- **A.** Increasing **B.** Decreasing **C.** Concave
- **48.**If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) f(2)}{x 2}$ ?

**A.** 
$$x^2 - 2x$$
 **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$  **D.**  $x^2 - 2x + 4$ 

C. 
$$x^2 + 2x + 3$$

- **49.**The result of  $\lim_{\Delta x \to 0} \frac{-3(x+\Delta x)^2+3x^2}{\Delta x}$  is: **A.**6*x* **B.**-6*x* **C.**3*x*<sup>2</sup> **D.** -3*x*<sup>2</sup>

- **50.**Which of the following is false?
  - **A**. The graph of a cubic function has exactly one point of inflection.

**B**.If 
$$f'(x) = g'(x)$$
, then  $f(x) = g(x)$ 

**C**. If 
$$g(x) = -5f(x)$$
, then  $g'(x) = -5f'(x)$ 

**D**. If 
$$y = \frac{2x}{\pi}$$
, then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

Kurdistan Region – Iraq SN: 30000011 In the Name of Allah

**High Committee for General Examinations** 

**Subject: Maths** Time: 3:30 Hours

General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Choose the correct option, two marks for each right answer

**1.** Use the given graph on the right to find the result of  $\lim_{x\to 0^+} f(x)$ 



**2.** The result of  $\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$  is: **A.** 0 **B.**-1 **C.**-2

**D.** Does not exist.

3. Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$ . A. -3 B. 3

**4.** If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

**A.**  $\frac{y+2x}{2y-x}$  **B.**  $\frac{2x}{2y-x}$  **C.**  $\frac{y-2x}{2y-x}$ 

5. Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

**A.**  $f(x) = \frac{2x}{3-x}$  **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

6. The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?





7. Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ . Find  $\frac{dx}{dt}$  at x = 2, by knowing that  $\frac{dy}{dt} = -3$ .

A.  $\frac{1}{4}$  B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

**8.** Which of the following is true?

**A.**  $\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$  **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2-1}{x-1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$ 

**9.** Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** x = -2

**B.** y = -2

**C.** y = -4

**D.** y = -2x - 8

10. Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....

**A.** Positive

**B.** Negative

**C.** Opposite

**D.** None

**11.** Determine the range of the function f from the given graph on the right.

A.[-2,2] B. [-2,1] C.[-1,2] D. [0,2]



12. Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function  $f(x) = \frac{-k}{x}$ . **A.** k = 2 **B.** k = -2 **C.** k = 3 **D.** k = -3

13. Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

**A.** 
$$\frac{1}{\sqrt{3}}$$
 **B.** –

A.  $\frac{1}{\sqrt{2}}$  B.  $-\frac{1}{\sqrt{2}}$  C.  $-\frac{2}{\sqrt{2}}$  D.  $\frac{2}{\sqrt{2}}$ 

14. A farmer plans to fence a rectangular pasture adjacent to a river . The area of the pasture must contain  $(51200 \, m^2)$ . What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**A.** 256 m, 200 m

**B.** 400 m, 128 m **C.** 512 m, 100 m

**D.** 320 m, 160 m

**15.**The line y = -4x + 7 passes through which of the following points?

**A.** 
$$(5,-3)$$
 **B.**  $(-3,5)$ 

**16.** For what value of a, does the function  $f(x) = \begin{cases} ax^2 + 1 & x \le 2 \\ 2x - a & x > 2 \end{cases}$  has no points A.  $\frac{-3}{5}$  B.  $\frac{-5}{2}$  C.  $\frac{5}{3}$  D.  $\frac{3}{5}$ 

of discontinuity?

**17.**Which of the following graphs represents a function?



**18.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ .

**A.** 
$$y = 1$$

**A.** y = 1 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$  **D.** y = 0

**19.**On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

**A.**] 
$$-1$$
, 1 [ **B.**]  $-\infty$ ,  $-1$ [ **C.**]  $-1$ ,  $+\infty$ [ **D.** None

**20.** Find the derivative of the function  $f(x) = x e^x$ .

**D.**  $f'(x) = xe^x + 1$ 

**21.** The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain .

A. Increasing

**B.** Decreasing **C.** Concave **D.** Convex

22. Find the result of  $\lim_{x\to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): A. 0 B. 1 C.  $\frac{1}{4}$  D.  $+\infty$ 

**23.** Which of the following functions has a removable discontinuity at x = -3?

**A.**  $f'(x) = e^x$  **B.**  $f'(x) = e^x(x+1)$  **C.**  $f'(x) = e^x + 1$ 

**A.**  $f(x) = \frac{x^2 - 9}{(x+3)^2}$  **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

**24.**Which of the following is false?

**A**. The graph of a cubic function has exactly one point of inflection.

**B**.If f'(x) = g'(x), then f(x) = g(x)

**C**. If g(x) = -5f(x), then g'(x) = -5f'(x)

**D**. If  $y = \frac{2x}{\pi}$ , then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

**25.**Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases} \qquad \mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases} \qquad \mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

**26.** The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is :

27. Which of the following functions has no vertical asymptote at x = 2?

**A.** 
$$f(x) = \frac{x^2 - 4}{(x - 2)^2}$$
 **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$  **D.**  $f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$ 

**28.** The result of  $\lim_{x \to 3^-} \frac{2-x}{x-3}$  is: **A.**  $-\infty$  **B.**  $+\infty$  **C.** 0

**29.**If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.** -2

**30.**On which interval is the function  $f(x) = x^{\frac{2}{3}} - 4$  decreasing?

**A.** ]  $-\infty$ , 0 [ **B.** ]  $-\infty$ , 4 [

 $\mathbb{C}$ .  $]0,+\infty[$ 

**D.** None

**31.**IF  $f(x) = 3ax^3 + 3$  is a function and f'(3) = -162, find the result of f(2).

**B.** -51

**C.** 51

**32.**If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?

A. 
$$(f g' - f' g)' = f' g'' - f'' g'$$
  
B.  $f g'' + f'' g = (f g)''$   
C.  $(f' g')' = f'' g''$   
D.  $(f g)'' = f g'' + 2f' g' + f'' g$ 

**33.** Find the result of  $\lim_{x \to 0} \frac{\frac{5}{2x+10} - \frac{1}{2}}{x}$ . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$  **D.** 0

**34.**If f(x) = 2x - 4 and g(x) = 1 + 3x, find the value of x when f(x) = g(x).

**A.** x = -1 **B.** x = 1

**C.** x = 5

**D.** x = -5

**35.**Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph.

$$\mathbf{A.}\,f(x) = \frac{x^2}{x^2 + 3}$$

**A.** 
$$f(x) = \frac{x^2}{x^2 + 3}$$
 **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

**C.**
$$f(x) = \frac{x^2}{x^2 - 3}$$
 **D.**  $f(x) = \frac{x^2 - 1}{x^2 + 3}$ 

$$\mathbf{D.}\,f(x) = \frac{x^2 - 1}{x^2 + 3}$$



**36.** Find the equation of the line that passes through the point (-4, 1) and perpendicular to the y - axis . A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0**D.** y + 3 = 0

**37.** The given graph on the right shows the curve of the function f On which interval is f' increasing?



$$\mathbf{B}$$
.  $]0$ ,  $+\infty[$ 

$$\mathbf{C.} \,] - \infty$$
 ,0[  $\cup$  ]0 , + $\infty$ [

$$\mathbf{D}_{ullet}\,]-\infty$$
 ,  $+\infty[$ 



**38.** The result of  $\lim_{\Delta x \to 0} \frac{-3(x+\Delta x)^2+3x^2}{\Delta x}$  is:

 $\mathbf{A.6}x$ 

 $\mathbf{B}$ .-6x

C.3 $x^2$  D.  $-3x^2$ 

**39.** Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

A.(1,0)

**B.** (2,0)

C.(0,0)

**D.** None

**40.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2.2]$$

**B.** [0,2] **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.** [-2,0]

**41.** Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ 

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

**42.**If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

**A.** 
$$x^2 - 2x$$

**A.**  $x^2 - 2x$  **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$ 

**43.** Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.



**44.** The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases  $(18 \text{ cm}^2/\text{min})$ , what is the length of the side of the cube?

**A.** 2 cm **B.** 4 cm **C.**  $2\sqrt{2}$  cm

**D.** 8 *cm* 

**45.** The result of  $\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2}$  is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$ 

**46.** Use the given graph of the function y = f(x) on the right, to determine the graph of the function y = -f(x - 2)



**47.** Find the result of  $\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$ . **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$ 

**48.** Which of the following functions is symmetric with respect to the y - axis?

$$\mathbf{A.} \ x^2 y - x^2 + 3y = 0$$

**B.** 
$$v = \sqrt{x - 4}$$

**A.** 
$$x^2y - x^2 + 3y = 0$$
 **B.**  $y = \sqrt{x-4}$  **C.**  $y = |x+2| - 2$  **D.**  $x^2y - x = 0$ 

**49.** Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)

**B.**  $\frac{-3}{2}$ 

 $C.\frac{2}{3}$ 

**50.** In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet What is the highest point the rocket can reach?

**A.** 404 ft

**B.** 580 ft **C.** 606 ft **D.** 768 ft

Kurdistan Region – Iraq SN: 30000012 In the Name of Allah Name: \_ \_ \_ \_ \_ **High Committee for General Examinations** Subject: Maths Time: 3:30 Hours General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Choose the correct option, two marks for each right answer

1. Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.



2. Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ .

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

**3.** Which of the following is false?

**A**. The graph of a cubic function has exactly one point of inflection.

**B**.If f'(x) = g'(x), then f(x) = g(x)

**C**. If g(x) = -5f(x), then g'(x) = -5f'(x)

**D**. If  $y = \frac{2x}{\pi}$ , then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

4. The result of  $\lim_{x\to 3^-} \frac{2-x}{x-3}$  is:

 $A. -\infty B. +\infty$ 

**5.** Which of the following graphs represents a function?



**6.** Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)

A.  $\frac{3}{2}$  B.  $\frac{-3}{2}$  C.  $\frac{2}{3}$ 

7. Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function  $f(x) = \frac{-k}{r}$ . **A.** k = 2 **B.** k = -2 **C.** k = 3

**D.** k = -3

**8.** Determine the range of the function *f* 

from the given graph on the right.

A.[-2,2]

C.[-1,2]

**D**. [0, 2]



9. A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain  $(51200 \, m^2)$ . What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**A.**  $256 \, m$ ,  $200 \, m$ 

**B.** 400 m, 128 m **C.** 512 m, 100 m

**D.** 320 m, 160 m

**10.** Find the equation of the line that passes through the point (-4, 1) and perpendicular to

the y – axis . **A.** x + 4 = 0 **B.** y - 4x = 0 **C.** y - 1 = 0

**D.** y + 3 = 0

11. Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph.

**A.**  $f(x) = \frac{x^2}{x^2 + 3}$  **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

 $\mathbf{C}.f(x) = \frac{x^2}{x^2 - 3}$   $\mathbf{D}.f(x) = \frac{x^2 - 1}{x^2 + 3}$ 



**12.**If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$ C. 2 D. -213. Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

A.(1,0)

B.(2,0) C.(0,0)

**D.** None

**14.**If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

**A.**  $x^2 - 2x$  **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$  **D.**  $x^2 - 2x + 4$ 

**15.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2,2]$$

**A.** [-2,2] **B.** [0,2] **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.** [-2,0]

**16.**Use the given graph on the right

to find the result of  $\lim_{x\to 0^+} f(x)$ 

**A**. 0 **B.** -1 **C.** 2



17. The given graph on the right shows the curve of the function f On which interval is f' increasing?

$$\mathbf{A.} \, ] - \infty$$
 ,0[

**B.**  $]0,+\infty[$ 

$$[\mathbf{C}, \mathbf{D}, \mathbf{D}, \mathbf{D}] = [\mathbf{D}, \mathbf{D}] = [\mathbf{D}, \mathbf{D}] = [\mathbf{D}, \mathbf{D}]$$

**18.** Find the equation of a line passing through the points (-2, -4) and (-2, 4). **B.** y = -2 **C.** y = -4**D.** y = -2x - 8

**A.** 
$$x = -2$$

**B.** 
$$y = -2$$

C. 
$$y = -4$$

**19.** Find the result of  $\lim_{x \to 0} \frac{\frac{3}{2x+10} - \frac{1}{2}}{x}$ . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$ 

**20.**On which interval is the function  $f(x) = x^{\frac{1}{3}} - 4$  decreasing?

**A.** ] 
$$-\infty$$
, 0 [ **B.** ]  $-\infty$ , 4 [ **C.** ] 0,  $+\infty$ [

$$[\mathbf{B.}] - \infty$$
, 4

$$\mathbf{C}$$
. ] 0,  $+\infty$ 

**D.** None

**21.**The line y = -4x + 7 passes through which of the following points?

$$A.(5,-3)$$
  $B.(-3,5)$ 

$$C.(2,-1)$$

 $\mathbf{D} \cdot (-1,2)$ 

**22.** Which of the following functions has a removable discontinuity at x = -3?

**A.** 
$$f(x) = \frac{x^2 - 9}{(x+3)^2}$$
 **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

23. Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ .

**A.** 
$$y = 1$$
 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$  **D.**  $y = 0$ 

**24.** Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

**A.** 
$$\frac{1}{\sqrt{3}}$$
 **B.**  $-\frac{1}{\sqrt{3}}$  **C.**  $-\frac{2}{\sqrt{3}}$  **D.**  $\frac{2}{\sqrt{3}}$ 

**25.** For what value of  $\mathbf{a}$ , does the function  $f(x) = \begin{cases} \mathbf{a}x^2 + 1 & x \le 2 \\ 2x - \mathbf{a} & x > 2 \end{cases}$  has no points of discontinuity?  $\mathbf{A} \cdot \frac{-3}{5} \quad \mathbf{B} \cdot \frac{-5}{3} \quad \mathbf{C} \cdot \frac{5}{3} \quad \mathbf{D} \cdot \frac{3}{5}$ 

**26.**If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?

A. 
$$(f g' - f'g)' = f'g'' - f''g'$$
 B.  $fg'' + f''g = (f g)''$ 

B. 
$$fg'' + f''g = (fg)''$$

C. 
$$(f'g')' = f''g''$$
D.  $(fg)'' = fg'' + 2f'g' + f''g$ 
27. IF  $f(x) = 3ax^3 + 3$  is a function and  $f'(3) = -162$ , find the result of  $f(2)$ .

**A.** 2 **B.** 
$$-51$$
 **C.** 51 **D.**  $-45$ 

**28.** The result of 
$$\lim_{\Delta x \to 0} \frac{-3(x+\Delta x)^2+3x^2}{\Delta x}$$
 is:

$$\mathbf{A.6}x$$

**A.**6*x* **B.**-6*x* **C.**3
$$x^2$$
 **D.**  $-3x^2$ 

**29.**If 
$$x^2 - xy + y^2 = 1$$
 then which of the following is equal to  $\frac{dy}{dx}$ ?

A. 
$$\frac{y+2x}{2y-x}$$
 B.  $\frac{2x}{2y-x}$  C.  $\frac{y-2x}{2y-x}$ 

$$\mathbf{B} \cdot \frac{2x}{2y-x}$$

C. 
$$\frac{y-2x}{y-2x}$$

$$-2x$$

**30.** Which of the following functions has no vertical asymptote at x = 2?

**A.** 
$$f(x) = \frac{x^2-4}{(x-2)^2}$$

**B.** 
$$f(x) = \frac{x+2}{x^2-4}$$

**A.** 
$$f(x) = \frac{x^2 - 4}{(x - 2)^2}$$
 **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$ 

**D** 
$$f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$$

**31.** The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain .

**A.** Increasing

**B.** Decreasing **C.** Concave

**D.** Convex

**32.**Use the given graph of the function y = f(x) on the right,

to determine the graph of the function y = -f(x-2)



33. Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$ .

$$A. -3$$

$$\mathbf{C}.+\infty$$

**34.** Which of the following functions is symmetric with respect to the y - axis?

**A.** 
$$x^2y - x^2 + 3y = 0$$
 **B.**  $y = \sqrt{x-4}$  **C.**  $y = |x+2| - 2$  **D.**  $x^2y - x = 0$ 

**B.** 
$$y = \sqrt{x - 4}$$

$$C.y = |x + 2| -$$

$$\mathbf{D.} \, x^2 y - x = 0$$

**35.**The result of  $\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$  is: **A.** 0 **B.**-1 **C.**-2

**D.** Does not exist.

**36.**On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

$$A.] - 1,1[$$

$$\mathbf{B.}] - \infty$$
,  $-1$ 

**B.** ] 
$$-\infty$$
,  $-1$ [ **C.**]  $-1$ ,  $+\infty$ [ **D.** None

**37.**Which of the following is true?

**A.** 
$$\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$$
 **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$ 

**B.** 
$$\lim_{x\to 2} \frac{3}{x-2} = 3$$

$$\mathbf{C.} \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$$

$$\mathbf{D.} \lim_{x \to 0} \frac{\sin x}{x} = 0$$

**38.** The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?





**A.** 0 **B.**-4 **C.** 4 **39.**The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is : **40.** Find the result of  $\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$  **41.** Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ .

Find 
$$\frac{dx}{dt}$$
 at  $x = 2$ , by knowing that  $\frac{dy}{dt} = -3$ .

$$A.\frac{1}{4}$$

**B.** 
$$\frac{-1}{4}$$

A.  $\frac{1}{4}$  B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

**42.**Find the derivative of the function  $f(x) = x e^x$ .

**A.** 
$$f'(x) = e^x$$

**B.** 
$$f'(x) = e^x(x+1)$$

$$\mathbf{C}.f'(x) = e^x + 1$$

**D.** 
$$f'(x) = xe^x + 1$$

**43.** The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases (18  $cm^2/min$ ), what is the length of the side of the cube?

**B.** 4 cm

C. 
$$2\sqrt{2}$$
 cm

**D.** 8 *cm* 

**44.**If 
$$f(x) = 2x - 4$$
 and  $g(x) = 1 + 3x$ , find the value of x when  $f(x) = g(x)$ .

**A.** 
$$x = -1$$
 **B.**  $x = 1$ 

**C.** 
$$x = 5$$

**D.** 
$$x = -5$$

**45.** Depending on the intermediate value theorem (IVT). If the function 
$$f$$
 is continuous between  $(x = a \text{ and } x = b)$ , then the equation  $f(x) = 0$  has at least one root between two numbers  $\mathbf{a}$  and  $\mathbf{b}$  when the signs  $f(a)$  and  $f(b)$  are .............

**A.** Positive

**B.** Negative

C. Opposite

**D.** None

**46.** In a fireworks festival, a rocket is launched upward. The function 
$$S(t) = -16t^2 + 192t + 4$$
 is the position function of the rocket,  $t$  is measured in seconds and  $S$  in feet

What is the highest point the rocket can reach?

**A.** 404 ft

**B.** 580 ft **C.** 606 ft **D.** 768 ft

**47.** The result of  $\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2}$  is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$  **D.**  $\frac{1}{9}$ 

**48.** Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

$$\mathbf{A.}f(x) = \frac{2x}{3-x}$$

**B.** 
$$f(x) = \frac{-2x^2+6}{x-3}$$

C. 
$$f(x) = \frac{-4x^2 - 18}{2x - 6}$$

**A.** 
$$f(x) = \frac{2x}{3-x}$$
 **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

**49.**Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ -1 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 2\\ \sqrt{2} & x = 2 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

C. 
$$g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$
D.  $g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ -1 & x = 1 \end{cases}$ 
50. Find the result of  $\lim_{x \to 0} \frac{\sqrt{x+5} - \sqrt{5}}{x}$ .

A.  $\frac{1}{\sqrt{10}}$  B.  $2\sqrt{5}$  C.  $\frac{-1}{\sqrt{5}}$  D.  $\frac{1}{2\sqrt{5}}$ 

**B.** 
$$2\sqrt{5}$$

$$C_{\bullet} \frac{-1}{\sqrt{5}}$$

$$\mathbf{D} \cdot \frac{1}{2\sqrt{5}}$$

Kurdistan Region – Iraq SN: 30000013 In the Name of Allah Subject: Maths Time: 3:30 Hours High Committee for General Examinations General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Choose the correct option, two marks for each right answer

- 1. The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases  $(18 \text{ cm}^2/\text{min})$ , what is the length of the side of the cube?
  - **A.** 2 *cm*
- **B.** 4 cm
- C.  $2\sqrt{2}$  cm
- **D.** 8 cm
- 2. On which interval is the function  $f(x) = x^{\frac{2}{3}} 4$  decreasing?
  - $[\mathbf{A}, ] \infty, 0 [ \mathbf{B}, ] \infty, 4 [$
- C.  $]0,+\infty[$
- **D.** None
- 3. In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet What is the highest point the rocket can reach?
  - **A.** 404 ft
- **B.** 580 ft **C.** 606 ft **D.** 768 ft
- **4.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x 3x^2 + 1}{2x^2 + 5x}$ .
- **A.** y = 1 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$  **D.** y = 0
- 5. Find the result of  $\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$
- **6.** Which of the following graphs represents a function?



- 7. Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

  - A.  $\frac{1}{\sqrt{3}}$  B.  $-\frac{1}{\sqrt{3}}$  C.  $-\frac{2}{\sqrt{3}}$  D.  $\frac{2}{\sqrt{2}}$

- **8.** Use the given graph on the right to find the result of  $\lim_{x\to 0^+} f(x)$ 
  - **A**. 0



- **9.** The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is :
- **A.** 0

**10.** Use the given graph of the function y = f(x) on the right, to determine the graph of the function y = -f(x-2)



**11.**Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases} \qquad \mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x \neq 1 \end{cases} \qquad \mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x \neq 1 \end{cases}$$

**B.** 
$$g(x) = \begin{cases} \frac{\sqrt{2-x-\sqrt{x}}}{x-1} & x \neq 1\\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{0.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ -1 & x = 1 \end{cases}$$

**12.**If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?

A. 
$$(f g' - f' g)' = f' g'' - f'' g'$$
 B.  $f g'' + f'' g = (f g)''$ 

B. 
$$fg'' + f''g = (fg)''$$

$$C.(f'g')' = f''g''$$

D. 
$$(f g)'' = f g'' + 2f'g' + f''g$$

13. If f(x) = 2x - 4 and g(x) = 1 + 3x, find the value of x when f(x) = g(x).

**A.** 
$$x = -1$$
 **B.**  $x = 1$  **C.**  $x = 5$ 

- **D.** x = -5
- **14.** The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain .

- **B.** Decreasing **C.** Concave
- **D.** Convex
- **15.**If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.** -2
- **16.** For what value of  $\mathbf{a}$ , does the function  $f(x) = \begin{cases} \mathbf{a}x^2 + 1 & x \le 2 \\ 2x \mathbf{a} & x > 2 \end{cases}$  has no points of discontinuity?  $\mathbf{A} \cdot \frac{-3}{5} \quad \mathbf{B} \cdot \frac{-5}{3} \quad \mathbf{C} \cdot \frac{5}{3} \quad \mathbf{D} \cdot \frac{3}{5}$
- **17.**Which of the following is true?

- **A.**  $\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$  **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2-1}{x-1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$ **18.** Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ .

Find  $\frac{dx}{dt}$  at x = 2, by knowing that  $\frac{dy}{dt} = -3$ .

$$\frac{1}{dt} = -3.$$

- A.  $\frac{1}{4}$  B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$
- 19. IF  $f(x) = 3ax^3 + 3$  is a function and f'(3) = -162, find the result of f(2).
  - **A.** 2
- **B.** -51
- **20.** Which of the following functions has a removable discontinuity at x = -3?

**A.** 
$$f(x) = \frac{x^2 - 9}{(x+3)^2}$$
 **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

$$3. f(x) = \frac{x^3 + 27}{2x + 6}$$

$$\mathbf{C.}\,f(x) =$$

- **21.**On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

$$\mathbf{A} \cdot \mathbf{J} - 1$$
,  $1 \mid \mathbf{I}$ 

$$\mathbf{B}.]-\infty$$

**A.**] 
$$-1$$
, 1 [ **B.**]  $-\infty$ ,  $-1$ [ **C.**]  $-1$ ,  $+\infty$ [ **D.** None

- **22.** Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....
  - **A.** Positive
- **B.** Negative
- **C.** Opposite
  - **D.** None
- **23.**If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) f(2)}{x 2}$ ?

**A.** 
$$x^2 - 2x$$
 **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$  **D.**  $x^2 - 2x + 4$ 

$$\mathbf{R} \cdot \mathbf{r}^2 + 2\mathbf{r}$$

C. 
$$x^2 + 2x$$

**D.** 
$$x^2 - 2x + 4$$

- **24.** The result of  $\lim_{x\to 3^-} \frac{2-x}{x-3}$  is:  $\mathbf{A.} -\infty \quad \mathbf{B.} +\infty \quad \mathbf{C.} \ 0$
- **25.** Which of the following functions has no vertical asymptote at x = 2?
  - **A.**  $f(x) = \frac{x^2 4}{(x 2)^2}$  **B.**  $f(x) = \frac{x + 2}{x^2 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 3x + 2}$  **D.**  $f(x) = \frac{x^2 + x 6}{2x^2 8}$

**26.** Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

$$\mathbf{A.}f(x) = \frac{2x}{3-x}$$

**A.**  $f(x) = \frac{2x}{3-x}$  **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

- **27.** Find the result of  $\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$ . **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$

- **28.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2, 2]$$

- **A.** [-2,2] **B.** [0,2] **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.** [-2,0]
- **29.**The result of  $\lim_{\Delta x \to 0} \frac{-3(x + \Delta x)^2 + 3x^2}{\Delta x}$  is: **A.**6*x* **B.**-6*x* **C.**3*x*<sup>2</sup> **D.** -3*x*<sup>2</sup> **30.**Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2 + 1}}$ . **A.** -3 **B.** 3 **C.** + $\infty$  **D.** 0

- **31.**If  $x^2 xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

$$\mathbf{A.} \frac{y+2x}{2y-x}$$

$$\mathbf{B} \cdot \frac{2x}{2y-x}$$

A. 
$$\frac{y+2x}{2y-x}$$
 B.  $\frac{2x}{2y-x}$  C.  $\frac{y-2x}{2y-x}$ 

**D.** 
$$\frac{-2x}{2y-x}$$

32. The line y = -4x + 7 passes through which of the following points?

**A.** 
$$(5,-3)$$
 **B.**  $(-3,5)$ 

- C.(2,-1)
- $\mathbf{D} \cdot (-1,2)$
- **33.** Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

- **B.** (2,0) **C.** (0,0)
- **D.** None

- **34.**The result of  $\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$  is: **A.** 0 **B.**-1
- $\mathbf{C}.\mathbf{-2}$
- **D.** Does not exist.
- **35.**Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph.



$$\mathbf{B.}\,f(x) = \frac{x}{x^2 + 3}$$

$$\mathbf{C.}f(x) = \frac{x^2}{x^2 - 3}$$

$$\mathbf{C.}f(x) = \frac{x^2}{x^2 - 3}$$
  $\mathbf{D.}f(x) = \frac{x^2 - 1}{x^2 + 3}$ 



- **36.** A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain  $(51200 \, m^2)$ . What dimensions would be required for the least amount of fencing if fencing is not needed along the river.
  - **A.**  $256 \, m$ ,  $200 \, m$
- **B.** 400 m, 128 m **C.** 512 m, 100 m
- **D.** 320 m, 160 m
- **37.** The given graph on the right shows the curve of the function f On which interval is f' increasing?



**B.** 
$$]0$$
,  $+\infty[$ 

$$\mathbf{C.}\ ]-\infty$$
 ,0 $[\cup]0$  ,  $+\infty[$ 

$$\mathbf{D}.\ ]-\infty$$
,  $+\infty[$ 



**38.** Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.







$$C_{\cdot} \frac{-1}{9}$$

**D.** 
$$\frac{1}{9}$$

**40.** The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?

A.
$$\frac{3}{5}$$
 B. $\frac{2}{5}$  C.1

**B.** 
$$\frac{2}{5}$$

**D.** 2



**41.** Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ 

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

$$\mathbf{B}.f^{m}(x) = -$$

C. 
$$f'''(x) = \frac{-96}{x^5}$$

**D.** 
$$f'''(x) = \frac{96}{x^5}$$

**42.** Find the result of 
$$\lim_{x\to 0} \frac{\frac{5}{2x+10} - \frac{1}{2}}{x}$$
. **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$  **D.** 0

. 
$$A.\frac{5}{2}$$

**43.** Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)

**A.** 
$$\frac{3}{2}$$

**A.** 
$$\frac{3}{2}$$
 **B.**  $\frac{-3}{2}$  **C.**  $\frac{2}{3}$ 

**D.** 
$$\frac{-2}{3}$$

**44.** Which of the following functions is symmetric with respect to the y - axis?

**A.** 
$$x^2y - x^2 + 3y = 0$$
 **B.**  $y = \sqrt{x-4}$  **C.**  $y = |x+2| - 2$  **D.**  $x^2y - x = 0$ 

**B.** 
$$y = \sqrt{x - 4}$$

$$C.y = |x + 2| - 2$$

**D.** 
$$x^2y - x = 0$$

**45.** Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function 
$$f(x) = \frac{-k}{x}$$
. **A.**  $k = 2$  **B.**  $k = -2$  **C.**  $k = 3$  **D.**  $k = -3$ 

**A.** 
$$k = 2$$

**B.** 
$$k = -2$$

**C.** 
$$k = 3$$

**D.** 
$$k = -3$$

- **46.**Which of the following is false?
  - **A**. The graph of a cubic function has exactly one point of inflection.

**B**.If 
$$f'(x) = g'(x)$$
, then  $f(x) = g(x)$ 

**C**. If 
$$g(x) = -5f(x)$$
, then  $g'(x) = -5f'(x)$ 

**D**. If 
$$y = \frac{2x}{\pi}$$
, then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

- **47.** Find the equation of the line that passes through the point (-4, 1) and perpendicular to the y - axis . A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0**D.** y + 3 = 0
- **48.** Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** 
$$x = -2$$

**B.** 
$$y = -2$$

**C.** 
$$y = -4$$

**D.** 
$$y = -2x - 8$$

**49.** Determine the range of the function ffrom the given graph on the right.

$$A.[-2,2]$$

$$C.[-1,2]$$



**50.** Find the derivative of the function  $f(x) = x e^x$ .

$$\mathbf{A.}\,f'(x)=e^x$$

**A.** 
$$f'(x) = e^x$$
 **B.**  $f'(x) = e^x(x+1)$  **C.**  $f'(x) = e^x + 1$ 

$$\mathbf{C.}f'(x) = e^x + 1$$

**D.** 
$$f'(x) = xe^x + 1$$

Kurdistan Region – Iraq SN: 30000014 In the Name of Allah

**High Committee for General Examinations** 

Subject: Maths Time: 3:30 Hours

General exams for preparatory stage (science) For the Academic year (2020-2021) First attempt

Choose the correct option, two marks for each right answer

**1.** Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ 

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

**B.**
$$f'''(x) = \frac{24}{x^4}$$

**2.** Which of the following graphs represents a function?



- 3. Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....
  - **A.** Positive
- **B.** Negative
- **C.** Opposite
- **D.** None
- **4.** Find the result of  $\lim_{x \to 0} \frac{\frac{5}{2x+10} \frac{1}{2}}{x}$ . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$  **D.** 0

- **5.** The result of  $\lim_{x \to 3^{-}} \frac{2-x}{x-3}$  is: **A.**  $-\infty$  **B.**  $+\infty$  **C.** 0 **D.** -1
- **6.** Which of the following functions has a removable discontinuity at x = -3?

**A.** 
$$f(x) = \frac{x^2 - 9}{(x+3)^2}$$
 **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

**B.** 
$$f(x) = \frac{x^3 + 27}{2x + 6}$$

C. 
$$f(x) = \frac{x^2 + 6}{x + 3}$$

**D.** 
$$f(x) = \frac{|x+3|}{2x+6}$$

- 7. The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is :

- **A.** 0 **B.**-4 **C.** 4 **D.**  $\frac{4}{5}$
- **8.** Which of the following is false?
  - **A**. The graph of a cubic function has exactly one point of inflection.
  - **B**.If f'(x) = g'(x), then f(x) = g(x)
  - C. If g(x) = -5f(x), then g'(x) = -5f'(x)
  - **D**. If  $y = \frac{2x}{\pi}$ , then  $\frac{dy}{dx} = \frac{2}{\pi}$
- **9.** Redefine the function  $f(x) = \frac{\sqrt{2-x} \sqrt{x}}{x-1}$  to be continuous at x = 1.

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ -1 & x = 1 \end{cases}$$

- **10.** Find the result of  $\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$
- **11.**The result of  $\lim_{x \to -2} \frac{\frac{1}{1-x} \frac{1}{3}}{x+2}$  is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$  **D.**  $\frac{1}{9}$

**12.**Use the given graph of the function y = f(x) on the right, to determine the graph of the function y = -f(x-2)



**13.**On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

$$[A.] - 1, 1[$$

$$\mathbf{B} \cdot \mathbf{J} - \infty$$
,  $-$ 

**A.**] 
$$-1$$
, 1 [ **B.**]  $-\infty$ ,  $-1$ [ **C.**]  $-1$ ,  $+\infty$ [ **D.** None

**14.**The result of 
$$\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$$
 is: **A.** 0 **B.**-1 **C.**-2

$$\mathbf{C}.\mathbf{-2}$$

**15.** The given graph on the right shows the curve of the function fOn which interval is f' increasing?

**16.**On which interval is the function  $f(x) = x^{\frac{2}{3}} - 4$  decreasing?

$$A.] - \infty , 0[$$

**B.** 
$$]0,+\infty[$$

C. 
$$] - \infty$$
,  $0[ \cup ]0$ ,  $+\infty[$ 
D.  $] - \infty$ ,  $+\infty[$ 

$$\mathbf{D}.\ ]-\infty$$
,  $+\infty[$ 



 $[\mathbf{A}, ] - \infty, 0 [ \mathbf{B}, ] - \infty, 4 [ \mathbf{C}, ] 0, +\infty [$ **17.** Which of the following functions has no vertical asymptote at x = 2?

**A.** 
$$f(x) = \frac{x^2 - 4}{(x - 2)^2}$$
 **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$ 

**B.** 
$$f(x) = \frac{x+2}{x^2-1}$$

C. 
$$f(x) = \frac{x^2+4}{x^2-3x+4}$$

**D** 
$$f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$$

**18.** Find the result of 
$$\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$$
. **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$ 

**A.** 
$$\frac{1}{\sqrt{10}}$$

**B.** 
$$2\sqrt{5}$$

C. 
$$\frac{-1}{\sqrt{5}}$$

**D** . 
$$\frac{1}{2\sqrt{5}}$$

**19.**If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

**A.** 
$$x^2 - 2x$$

**B.** 
$$x^2 + 2x$$

**A.** 
$$x^2 - 2x$$
 **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$ 

**D.** 
$$x^2 - 2x + 4$$

**20.** If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

**A.** 
$$\frac{y+2x}{2y-x}$$
 **B.**  $\frac{2x}{2y-x}$  **C.**  $\frac{y-2x}{2y-x}$ 

$$\mathbf{B}.\frac{2x}{2y-x}$$

$$C.\frac{y}{2y}$$

$$\mathbf{D.} \ \frac{-2x}{2y-x}$$

21.IF  $f(x) = 3ax^3 + 3$  is a function and f'(3) = -162, find the result of f(2).

**B.** 
$$-51$$

**22.**Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph



$$\mathbf{B.}\,f(x) = \frac{x}{x^2 + 3}$$

$$\mathbf{C} \cdot f(x) = \frac{x^2}{x^2 - 3}$$
  $\mathbf{D} \cdot f(x) = \frac{x^2 - 1}{x^2 + 3}$ 

$$\mathbf{D.}\,f(x) = \frac{x^2 - 1}{x^2 + 3}$$



**23.** Which of the following functions is symmetric with respect to the y - axis?

**A.** 
$$x^2y - x^2 + 3y = 0$$
 **B.**  $y = \sqrt{x-4}$  **C.**  $y = |x+2| - 2$  **D.**  $x^2y - x = 0$ 

$$y = \sqrt{x-4}$$

$$\mathbf{C.}y = |x + 2| - 2$$

**D.** 
$$x^2y - x = 0$$

**24.** If 
$$f(x) = 2x - 4$$
 and  $g(x) = 1 + 3x$ , find the value of x when  $f(x) = g(x)$ .

**A.** 
$$x = -1$$
 **B.**  $x = 1$  **C.**  $x = 5$ 

**B.** 
$$x = 1$$

**25.** Find the domain of the function 
$$g \circ f$$
 when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2,2]$$
 **B.**  $[0,2]$  **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.**  $[-2,0]$ 

**D.** x = -5

**D.** [ 
$$-2$$
 ,  $0$ 





A. 
$$(f g' - f'g)' = f'g'' - f''g'$$
  
B.  $fg'' + f''g = (f g)''$   
C.  $(f'g')' = f''g''$   
D.  $(f g)'' = f g'' + 2f'g' + f''g$ 

**28.** Find the value of **b** when the distance between the point (1, -3) and the line 
$$3x - by = 5$$
 is  $(zero)$ 
**A.**  $\frac{3}{2}$ 
**B.**  $\frac{-3}{2}$ 
**C.**  $\frac{2}{2}$ 
**D.**  $\frac{-2}{2}$ 

**29.** The function 
$$f(x) = \frac{-1}{x+2}$$
 is always ..... in its domain .

**A.** Increasing **B.** Decreasing **C.** Concave **D.** Convex **30.** Find the value of 
$$k$$
 such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function 
$$f(x) = \frac{-k}{x}$$
. A.  $k = 2$  B.  $k = -2$  C.  $k = 3$ 

**31.**If 
$$f(x) = 2 (sinx) (cosx)$$
, find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.**  $-2$ 

**32.** Find the result of 
$$\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$$
.

**A.** 
$$-3$$
 **B.**  $3$  **C.**  $+\infty$  **D.**

**33.** Determine the range of the function 
$$f$$
 from the given graph on the right.

$$A.[-2,2]$$

$$B.[-2,1]$$

$$C.[-1,2]$$



**34.** The result of 
$$\lim_{\Delta x \to 0} \frac{-3(x+\Delta x)^2+3x^2}{\Delta x}$$
 is:

$$\mathbf{A.6}x \qquad \mathbf{B.-6}x$$

**C.**
$$3x^2$$
 **D.**  $-3x^2$ 

**35.** Find the point of inflection for the function 
$$f(x) = 3x(x-1)(x-2)$$
.

**A.** 
$$\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$$
 **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$ 

**B.** 
$$\lim_{x\to 2} \frac{3}{x-2} = 3$$

$$\mathbf{C.} \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$$

$$\mathbf{D.} \lim_{x \to 0} \frac{\sin x}{x} = 0$$

**37.** Find the slope of the tangent line to the graph 
$$y^2 = \frac{x+1}{x-1}$$
 at the point  $(2, \sqrt{3})$ .

**A.** 
$$\frac{1}{\sqrt{3}}$$
 **B.**  $-\frac{1}{\sqrt{3}}$  **C.**  $-\frac{2}{\sqrt{3}}$  **D.**  $\frac{2}{\sqrt{3}}$ 

**38.**The volume of a cube increases an average of 
$$(36 \text{ cm}^3/\text{min})$$
, while its surface area increases  $(18 \text{ cm}^2/\text{min})$ , what is the length of the side of the cube?

C. 
$$2\sqrt{2}$$
 cm

**39.** Determine the graph of the function 
$$f(x) = 2 - |x + 1|$$
 by using point plotting.



**40.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ .

**A.** 
$$y = 1$$

**B.** 
$$y = \frac{-3}{2}$$

**A.** 
$$y = 1$$
 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$  **D.**  $y = 0$ 

**D.** 
$$y = 0$$

**41.** Find the equation of the line that passes through the point (-4,1) and perpendicular to the y - axis . A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0

**42.** A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain  $(51200 \, m^2)$ . What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**A.** 
$$256 m$$
,  $200 m$ 

**B.** 
$$400 m$$
,  $128 m$  **C.**  $512 m$ ,  $100 m$ 

**D.** 320 m, 160 m

**43.**The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?



**44.** In a fireworks festival, a rocket is launched upward . The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet What is the highest point the rocket can reach?

**45.** Find the derivative of the function  $f(x) = x e^x$ .

$$\mathbf{A.}\,f'(x)=e^x$$

**B.** 
$$f'(x) = e^x(x+1)$$

$$\mathbf{C}.f'(x) = e^x + 1$$

$$\mathbf{D.}\ f'(x) = xe^x + 1$$

**46.** Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

**A.** 
$$f(x) = \frac{2x}{3-x}$$
 **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

**B.** 
$$f(x) = \frac{-2x^2 + 6x + 1}{x - 3}$$

$$\mathbf{C.}\,f(x) = \frac{-4x^2 - 18x}{2x - 6}$$

**D.** 
$$f(x) = \frac{-x^2 + 12x}{x - 3}$$

**47.** The line y = -4x + 7 passes through which of the following points?

**A.** 
$$(5,-3)$$
 **B.**  $(-3,5)$ 

**B.** 
$$(-3,5)$$

$$C.(2,-1)$$

$$\mathbf{D} \cdot (-1,2)$$

**48.** Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** 
$$x = -2$$

$$\mathbf{R} \mathbf{v} = -2$$

**C.** 
$$y = -x^2$$

**B.** 
$$y = -2$$
 **C.**  $y = -4$  **D.**  $y = -2x - 8$ 

**49.**Use the given graph on the right

to find the result of 
$$\lim_{x\to 0^+} f(x)$$
  
**A.** 0 **B.** -1 **C.** 2 **D.** Does not exist.

**A**. 0 **B**. 
$$-1$$



**50.** For what value of  $\mathbf{a}$ , does the function  $f(x) = \begin{cases} \mathbf{a}x^2 + 1 & x \le 2 \\ 2x - \mathbf{a} & x > 2 \end{cases}$  of discontinuity?  $\mathbf{A} \cdot \frac{-3}{5} \quad \mathbf{B} \cdot \frac{-5}{3} \quad \mathbf{C} \cdot \frac{5}{3}$ 

Kurdistan Region – Iraq SN: 30000015 In the Name of Allah High Committee for General Examinations

**Subject: Maths Time: 3:30 Hours** 

General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Choose the correct option, two marks for each right answer

**1.** Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)

A. 
$$\frac{3}{2}$$
 B.  $\frac{-3}{2}$  C.  $\frac{2}{3}$  D.  $\frac{-2}{3}$ 

**B.** 
$$\frac{-3}{2}$$

$$\frac{2}{3}$$

**D.** 
$$\frac{-2}{3}$$

2. Find the derivative of the function  $f(x) = x e^x$ .

$$\mathbf{A.}\,f'(x)=e^x$$

**B.** 
$$f'(x) = e^x(x+1)$$
 **C.**  $f'(x) = e^x + 1$  **D.**  $f'(x) = xe^x + 1$ 

$$\mathbf{C} \cdot f'(x) = e^x + 1$$

**D.** 
$$f'(x) = xe^x + 1$$

3. If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

**A.** 
$$\frac{y+2x}{2y-x}$$
 **B.**  $\frac{2x}{2y-x}$  **C.**  $\frac{y-2x}{2y-x}$  **D.**  $\frac{-2x}{2y-x}$ 

$$\mathbf{B} \cdot \frac{2x}{2y-x}$$

C. 
$$\frac{y-2x}{2y-x}$$

**D.** 
$$\frac{-2x}{2y-x}$$

**4.** The result of  $\lim_{\Delta x \to 0} \frac{-3(x + \Delta x)^2 + 3x^2}{\Delta x}$  is: **A.**6*x* **B.**-6*x* **C.**3*x*<sup>2</sup> **D.** -3*x*<sup>2</sup>

5. Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** 
$$x = -2$$

**B.** 
$$y = -2$$

**C.** 
$$y = -4$$

**D.** 
$$v = -2x - 8$$

**6.** The given graph on the right shows the curve of the function fOn which interval is f' increasing?



**B.** 
$$]0,+\infty[$$

C. 
$$]-\infty,0[\cup]0,+\infty[$$
 D.  $]-\infty,+\infty[$ 

**D.** 
$$]-\infty,+\infty[$$



7. Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ .

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$

**B.**
$$f'''(x) = \frac{24}{x^4}$$

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

**D.** 
$$f'''(x) = \frac{96}{x^5}$$

**8.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ .

**A.** 
$$y = 1$$

**B.** 
$$y = \frac{-3}{2}$$

**A.** 
$$y = 1$$
 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$  **D.**  $y = 0$ 

**D.** 
$$y =$$

**9.** Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....

**A.** Positive

- **B.** Negative
- **C.** Opposite
- **D.** None

**10.**Use the given graph on the right to find the result of  $\lim_{x\to 0^+} f(x)$ 

**A**. 0

- **B.** -1



**11.**If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?

A. 
$$(f g' - f'g)' = f'g'' - f''g'$$
  
B.  $fg'' + f''g = (f g)''$   
C.  $(f'g')' - f''g''$   
D.  $(f g)'' - f g'' + 2f'g'$ 

B. 
$$fg'' + f''g = (fg)'$$

$$C.(f'g')' = f''g''$$

$$D.(f g)'' = f g'' + 2f'g' + f''g$$

12. Which of the following functions is symmetric with respect to the y - axis?

**A.** 
$$x^2y - x^2 + 3y = 0$$
 **B.**  $y = \sqrt{x-4}$  **C.**  $y = |x+2| - 2$  **D.**  $x^2y - x = 0$ 

**B.** 
$$y = \sqrt{x - 4}$$

$$C.y = |x + 2| - 2$$

$$\mathbf{D.} \ x^2 y - x = 0$$

13. If f(x) = 2x - 4 and g(x) = 1 + 3x, find the value of x when f(x) = g(x).

**A.** 
$$x = -1$$
 **B.**  $x = 1$  **C.**  $x = 5$ 

**B.** 
$$x = 1$$

**C.** 
$$x = 5$$

**D.** 
$$x = -5$$

**14.** Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ .

Find 
$$\frac{dx}{dt}$$
 at  $x = 2$ , by knowing that  $\frac{dy}{dt} = -3$ .

A. 
$$\frac{1}{4}$$
 B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

**B.** 
$$\frac{-1}{4}$$

**15.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2,2]$$
 **B.**  $[0,2]$  **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.**  $[-2,0]$ 

$$C_{-2}$$

**16.** The result of 
$$\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$$
 is: **A.** 0 **B.** -1 **C.** -2 **D.** Does not exist. **17.** Find the result of  $\lim_{x\to -\infty} \frac{-3x}{\sqrt{x^2+1}}$ . **A.** -3 **B.** 3 **C.** + $\infty$  **D.** 0

$$A. -3$$

- **18.**Use the given graph of the function y = f(x) on the right,
  - to determine the graph of the function y = -f(x-2)



**19.** Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function 
$$f(x) = \frac{-k}{x}$$
. **A.**  $k = 2$  **B.**  $k = -2$  **C.**  $k = 3$  **D.**  $k = -3$ 

**A.** 
$$k = 2$$

**B.** 
$$k = -2$$

**C.** 
$$k = 3$$

**D.** 
$$k = -3$$

**20.** In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet

What is the highest point the rocket can reach?

**21.**Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x \neq 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x \neq 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2} x - \sqrt{x}}{x - 1} & x \neq 2\\ \sqrt{2} & x = 2 \end{cases}$$

$$\mathbf{C}_{\bullet} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ -1 & x = 1 \end{cases}$$

**22.** Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

**A.** 
$$f(x) = \frac{2x}{3-x}$$
 **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

$$f(x) = \frac{-2x^2 + 6x + 1}{x - 3}$$

**23.** Determine the range of the function *f* 

$$A.[-2,2]$$

**B**. 
$$[-2, 1]$$

$$C.[-1,2]$$



**24.** The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?



A. $\frac{3}{5}$  B. $\frac{2}{5}$  C.1 D. 2

**25.** Find the result of  $\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$ 

**26.** The result of  $\lim_{x\to 3^-} \frac{2-x}{x-3}$  is:

**A.**  $-\infty$  **B.**  $+\infty$  **C.** 0 **D.** -1

**27.**If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.** -2

**28.**Which of the following is true?

**A.**  $\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$ 

**B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$ 

**29.** Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.







30. The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is: A. 0 B.-4 C. 4

31. The result of  $\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2}$  is: A. 9 B. -9 C.  $\frac{-1}{9}$  D.  $\frac{1}{9}$ 

**32.**The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases  $(18 \text{ cm}^2/\text{min})$ , what is the length of the side of the cube?

**A.** 2 *cm* 

**B.** 4 cm

C.  $2\sqrt{2}$  cm

**D.** 8 *cm* 

**33.** For what value of a, does the function  $f(x) = \begin{cases} ax^2 + 1 & x \le 2 \\ 2x - a & x > 2 \end{cases}$  has no points

of discontinuity?  $\mathbf{A} \cdot \frac{-3}{5} \quad \mathbf{B} \cdot \frac{-5}{3} \quad \mathbf{C} \cdot \frac{5}{3} \quad \mathbf{D} \cdot \frac{3}{5}$ 

**34.** Find the result of  $\lim_{x\to 0} \frac{\frac{5}{2x+10} - \frac{1}{2}}{x}$ . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$ 

**35.**Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

A.(1,0)

**B.** (2,0)

 $\mathbf{C}.(0.0)$ 

**D.** None

**36.** Which of the following graphs represents a function?



**37.**On which interval is the function  $f(x) = x^{\frac{2}{3}} - 4$  decreasing?

**A.** ]  $-\infty$ , 0 [ **B.** ]  $-\infty$ , 4 [

C.  $]0,+\infty[$ 

**D.** None

**38.** The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain .

**A.** Increasing **B.** Decreasing **C.** Concave

**D.** Convex

**39.** Which of the following functions has no vertical asymptote at x = 2?

**A.**  $f(x) = \frac{x^2 - 4}{(x - 2)^2}$  **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 2x + 2}$  **D.**  $f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$ 

**40.** Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

A.  $\frac{1}{\sqrt{3}}$  B.  $-\frac{1}{\sqrt{3}}$  C.  $-\frac{2}{\sqrt{3}}$  D.  $\frac{2}{\sqrt{3}}$ 

41. A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain  $(51200 \, m^2)$ . What dimensions would be required for the least amount of fencing if

**A.** 256 m, 200 m

**B.** 400 m, 128 m **C.** 512 m, 100 m

**D.** 320 m, 160 m

**42.**If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

fencing is not needed along the river.

**A.**  $x^2 - 2x$  **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$ 

**D.**  $x^2 - 2x + 4$ 

**43.** Find the equation of the line that passes through the point (-4,1) and perpendicular to the y - axis . A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0**D.** y + 3 = 0

**44.** Find the result of  $\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$ . **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$ 

**45.**On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

A.] - 1,1[

**B.**  $]-\infty$ , -1 **C.** ]-1,  $+\infty$  **D.** None

**46.**Which of the following is false?

**A**. The graph of a cubic function has exactly one point of inflection.

**B**.If f'(x) = g'(x), then f(x) = g(x)

**C**. If g(x) = -5f(x), then g'(x) = -5f'(x)

**D**. If  $y = \frac{2x}{\pi}$ , then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

**47.** The line y = -4x + 7 passes through which of the following points?

**A.** (5,-3) **B.** (-3,5)

C.(2,-1)

 $\mathbf{D} \cdot (-1,2)$ 

**48.** Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph.

**A.**  $f(x) = \frac{x^2}{x^2 + 3}$  **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

**C.** $f(x) = \frac{x^2}{x^2 - 3}$  **D.**  $f(x) = \frac{x^2 - 1}{x^2 + 3}$ 



**49.**IF  $f(x) = 3ax^3 + 3$  is a function and f'(3) = -162, find the result of f(2).

**A.** 2

**B.** -51

**C.** 51

**D.** -45

**50.** Which of the following functions has a removable discontinuity at x = -3?

**A.**  $f(x) = \frac{x^2 - 9}{(x + 3)^2}$  **B.**  $f(x) = \frac{x^3 + 27}{2x + 6}$  **C.**  $f(x) = \frac{x^2 + 9}{x + 3}$  **D.**  $f(x) = \frac{|x + 3|}{2x + 6}$ 

Kurdistan Region – Iraq SN: 30000016 In the Name of Allah

High Committee for General Examinations General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Subject: Maths Time: 3:30 Hours

Choose the correct option, two marks for each right answer

**1.** On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

$$A.] - 1,1[$$

$$\mathbf{B}$$
.  $]-\infty$ ,  $-$ 

**A.**] 
$$-1$$
, 1 [ **B.**]  $-\infty$ ,  $-1$ [ **C.**]  $-1$ ,  $+\infty$ [ **D.** None

2. Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

**B.** 
$$(2,0)$$

**3.** The line y = -4x + 7 passes through which of the following points?

**A.** 
$$(5,-3)$$
 **B.**  $(-3,5)$  **C.**  $(2,-1)$ 

$$B.(-3.5)$$

$$C.(2,-1)$$

$$\mathbf{D}.(-1,2)$$

**4.** Which of the following graphs represents a function?



5. Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

**A.** 
$$\frac{1}{\sqrt{3}}$$
 **B.**  $-\frac{1}{\sqrt{3}}$  **C.**  $-\frac{2}{\sqrt{3}}$  **D.**  $\frac{2}{\sqrt{3}}$ 

**6.** If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.** -2

7. Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)

**A.** 
$$\frac{3}{2}$$

**A.** 
$$\frac{3}{2}$$
 **B.**  $\frac{-3}{2}$  **C.**  $\frac{2}{3}$ 

$$C.\frac{2}{3}$$

**D.** 
$$\frac{-2}{3}$$

8. If f(x) = 2x - 4 and g(x) = 1 + 3x, find the value of x when f(x) = g(x).

**A.** 
$$x = -1$$
 **B.**  $x = 1$  **C.**  $x = 5$  **D.**  $x = -5$ 

**B.** 
$$x = 1$$

**C.** 
$$x = 5$$

**9.** Find the result of 
$$\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$$
. **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$ 

**D**. 
$$\frac{1}{2\sqrt{5}}$$

**10.** Determine the range of the function ffrom the given graph on the right.

$$A.[-2.2]$$

**B**. 
$$[-2, 1]$$

$$C.[-1,2]$$



**11.**Use the given graph on the right to find the result of  $\lim_{x\to 0^+} f(x)$  **A.** 0 **B.** -1 **C.** 2 **D.** Does not exist.

- $\mathbf{A}$ . 0



**12.**Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$ .

- **B.** 3
- $\mathbf{C} \cdot +\infty$

**13.**Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases} \qquad \mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x \neq 1 \end{cases} \qquad \mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x \neq 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

C. 
$$g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ -1 & x = 1 \end{cases}$$

**14.**Use the intercepts, symmetry, asymptotes, first and second derivative test

to determine the function of the given graph.

**A.** 
$$f(x) = \frac{x^2}{x^2 + 3}$$
 **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

$$\mathbf{B.}\,f(x) = \frac{x}{x^2 + 3}$$

$$\mathbf{C.}f(x) = \frac{x^2}{x^2 - 3}$$

**C.**
$$f(x) = \frac{x^2}{x^2 - 3}$$
 **D.**  $f(x) = \frac{x^2 - 1}{x^2 + 3}$ 



**15.** The result of  $\lim_{\Delta x \to 0} \frac{-3(x+\Delta x)^2+3x^2}{\Delta x}$  is: **A.** 6x **B.** -6x

**C.** $3x^2$  **D.**  $-3x^2$ 

**16.**If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

A. 
$$\frac{y+2x}{2y-x}$$
 B.  $\frac{2x}{2y-x}$  C.  $\frac{y-2x}{2y-x}$ 

$$\mathbf{B} \cdot \frac{2x}{2y-x}$$

$$C.\frac{y}{2y}$$

**D.** 
$$\frac{-2x}{2y-x}$$

**17.** Find the derivative of the function  $f(x) = x e^x$ .

$$\mathbf{A.}\,f'(x)=e^x$$

**B.** 
$$f'(x) = e^x(x+1)$$
 **C.**  $f'(x) = e^x + 1$ 

$$\mathbf{C.}f'(x) = e^x + 1$$

$$\mathbf{).}\ f'(x) = xe^x + 1$$

**18.** Find the result of  $\lim_{x\to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$ 

**19.**Which of the following is true?

$$\mathbf{A.} \lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$$

**A.** 
$$\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$$
 **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2-1}{x-1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$ 

C. 
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$$

**D.** 
$$\lim_{x\to 0}\frac{\sin x}{x}=0$$

**20.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2, 2]$$

**A.** 
$$[-2,2]$$
 **B.**  $[0,2]$  **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.**  $[-2,0]$ 

**D.** 
$$[-2,0]$$

**21.** The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain .

22. The result of 
$$\lim_{x\to 3^-} \frac{2-x}{x-3}$$
 is: A.  $-\infty$  B.  $+\infty$  C. 0

**23.** Find the result of 
$$\lim_{x\to 0} \frac{\frac{5}{2x+10} - \frac{1}{2}}{x}$$
. **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$ 

. 
$$A.\frac{3}{2}$$

$$-\frac{1}{20}$$

**24.** Find the equation of the line that passes through the point 
$$(-4,1)$$
 and perpendicular to

the y - axis . A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0**25.**Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ 

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

**B.**
$$f'''(x) = \frac{24}{x^4}$$

$$\frac{24}{x^4}$$

**C.** 
$$f'''(x) = \frac{-96}{x^5}$$

**D.** 
$$f'''(x) = \frac{96}{x^3}$$

**D.** y + 3 = 0

**26.**Which of the following is false?

**A**. The graph of a cubic function has exactly one point of inflection.

**B**.If 
$$f'(x) = g'(x)$$
, then  $f(x) = g(x)$ 

C. If 
$$g(x) = -5f(x)$$
, then  $g'(x) = -5f'(x)$ 

**D**. If 
$$y = \frac{2x}{\pi}$$
, then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

| <b>27.</b> The result of | lim      | $-\chi$      | is: |
|--------------------------|----------|--------------|-----|
|                          | 24 \ \ \ | 1/ Y + I - I |     |

$$\mathbf{C}.\mathbf{-2}$$

**D.** Does not exist.

**28.** If 
$$f(x) = x^3$$
 then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

**A.** 
$$x^2 - 2x$$
 **B.**  $x^2 + 2x$ 

**B.** 
$$x^2 + 2x$$

C. 
$$x^2 + 2x + 4$$

**D.** 
$$x^2 - 2x + 4$$

- **29.** Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....
  - **A.** Positive
- **B.** Negative
- **C.** Opposite
- **D.** None
- **30.**On which interval is the function  $f(x) = x^{\frac{2}{3}} 4$  decreasing?

$$[\mathbf{A}, ] - \infty, 0 [ \quad \mathbf{B}, ] - \infty, 4 [ \quad \mathbf{C}, ] 0, +\infty [$$

$$[B.] - \infty, 4[$$

$$\mathbf{C}$$
.  $]0,+\infty[$ 

- **D.** None
- **31.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x 3x^2 + 1}{2x^2 + 5x}$ .

**A.** 
$$y = 1$$

**A.** 
$$y = 1$$
 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$ 

C. 
$$y = \frac{-3}{5}$$

**D.** 
$$y = 0$$

**32.** Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function 
$$f(x) = \frac{-k}{x}$$
. **A.**  $k = 2$  **B.**  $k = -2$  **C.**  $k = 3$  **D.**  $k = -3$ 

**A.** 
$$k = 2$$

**B.** 
$$k = -2$$

**C.** 
$$k = 3$$

**D.** 
$$k = -3$$

**33.** The given graph on the right shows the curve of the function fOn which interval is f' increasing?



**B.** 
$$]0$$
,  $+\infty[$ 

$$[\mathbf{C}.] - \infty, 0[\cup]0, +\infty[$$
  $[\mathbf{D}.] - \infty, +\infty[$ 

$$\mathbf{D.}\ ]-\infty$$
 ,  $+\infty[$ 



**34.**Use the given graph of the function y = f(x) on the right, to determine the graph of the function y = -f(x-2)









**35.** The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5) . What is the value of (x) that will make the areas of the rectangle and the triangle equal?



$$\mathbf{B} \cdot \frac{2}{5}$$



**36.** The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases  $(18 \text{ cm}^2/\text{min})$ , what is the length of the side of the cube?

C. 
$$2\sqrt{2}$$
 cm

**D.** 2

**37.** Which of the following functions is symmetric with respect to the y - axis?

**A.** 
$$x^2y - x^2 + 3y = 0$$
 **B.**  $y = \sqrt{x-4}$  **C.**  $y = |x+2| - 2$  **D.**  $x^2y - x = 0$ 

**B.** 
$$y = \sqrt{x - 4}$$

$$C.y = |x + 2| - 2$$

**D.** 
$$x^2y - x = 0$$

**38.** Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

$$\mathbf{A.}f(x) = \frac{2x}{3-x}$$

**B.** 
$$f(x) = \frac{-2x}{x}$$

$$\frac{6x+1}{3}$$

**A.** 
$$f(x) = \frac{2x}{3-x}$$
 **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

**D.** 
$$f(x) = \frac{-x + 12}{x - 3}$$

**39.** Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ .

Find 
$$\frac{dx}{dt}$$
 at  $x = 2$ , by knowing that  $\frac{dy}{dt} = -3$ .

$$A.\frac{1}{4}$$

$$\mathbf{B}.\frac{-1}{4}$$

A. 
$$\frac{1}{4}$$
 B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

- 40.A farmer plans to fence a rectangular pasture adjacent to a river . The area of the pasture must contain  $(51200 \, m^2)$ . What dimensions would be required for the least amount of fencing if fencing is not needed along the river.
  - **A.** 256 m, 200 m
- **B.** 400 m, 128 m **C.** 512 m, 100 m
- **D.** 320 m, 160 m
- **41.**If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?

A. 
$$(f g' - f'g)' = f'g'' - f''g'$$

B. 
$$fg'' + f''g = (fg)''$$
  
D.  $(fg)'' = fg'' + 2f'g' + f''g$ 

$$C.(f'g')' = f''g''$$

$$\sim 4$$

- **42.**The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is : **A.** 0 **B.**-4 **C.** 4 **D.**  $\frac{4}{5}$
- **43.** For what value of a, does the function  $f(x) = \begin{cases} ax^2 + 1 & x \le 2 \\ 2x a & x > 2 \end{cases}$  has no points
  - of discontinuity?

**A.** 
$$\frac{-3}{5}$$
 **B.**  $\frac{-5}{3}$  **C.**  $\frac{5}{3}$  **D.**  $\frac{3}{5}$ 

**44.** The result of 
$$\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2}$$
 is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$  **D.**  $\frac{1}{9}$ 

$$D_{\cdot} \frac{1}{\cdot}$$

**45.**IF 
$$f(x) = 3ax^3 + 3$$
 is a function and  $f'(3) = -162$ , find the result of  $f(2)$ .

**B.** 
$$-51$$

**46.** Which of the following functions has a removable discontinuity at x = -3?

**A.** 
$$f(x) = \frac{x^2 - 9}{(x+3)^2}$$
 **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

**B.** 
$$f(x) = \frac{x^3 + 27}{2x + 6}$$

$$\mathbf{C.}\,f(x) =$$

**D.** 
$$f(x) = \frac{|x+3|}{2x+6}$$

**47.** Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.









**48.** In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet What is the highest point the rocket can reach?

$$(-2.4)$$

**49.** Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** 
$$x = -2$$

**B.** 
$$y = -2$$

C. 
$$y = -4$$

**D.** 
$$y = -2x - 8$$

**50.** Which of the following functions has no vertical asymptote at x = 2?

**A.** 
$$f(x) = \frac{x^2 - 4}{(x - 2)^2}$$
 **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$  **D.**  $f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$ 

**B.** 
$$f(x) = \frac{x+1}{x^2}$$

$$\mathbf{C.}\,f(x) = \frac{1}{x^2}$$

**D** 
$$f(x) = \frac{x^2 + x^2}{2x^2 - x^2}$$

Kurdistan Region – Iraq SN: 30000017 In the Name of Allah

High Committee for General Examinations

**Subject: Maths Time: 3:30 Hours** 

General exams for preparatory stage (science) For the Academic year (2020-2021) First attempt

Choose the correct option, two marks for each right answer

**1.** Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)

A. 
$$\frac{3}{2}$$
 B.  $\frac{-3}{2}$  C.  $\frac{2}{3}$ 

**B.** 
$$\frac{-3}{2}$$

$$C_{1} \frac{2}{3}$$

**D.** 
$$\frac{-2}{3}$$

2. Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ .

Find  $\frac{dx}{dt}$  at x = 2, by knowing that  $\frac{dy}{dt} = -3$ .

A. 
$$\frac{1}{4}$$

$$\mathbf{B} \cdot \frac{-1}{4}$$

A. 
$$\frac{1}{4}$$
 B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

**3.** Which of the following graphs represents a function?



**4.** Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

$$\mathbf{A}.f(x) = \frac{2x}{3-x}$$

**B.** 
$$f(x) = \frac{-2x^2 + 6x + 1}{x - 3}$$

C. 
$$f(x) = \frac{-4x^2 - 18}{2x - 6}$$

**A.** 
$$f(x) = \frac{2x}{3-x}$$
 **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

**5.** Determine the range of the function ffrom the given graph on the right.

$$A.[-2,2]$$

$$B.[-2,1]$$

$$C.[-1,2]$$



**6.** The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is :

**D.** 
$$\frac{4}{5}$$

7. Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.









**8.** Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$ . **A.** -3 **B.** 3

$$A. -3$$

**9.** Which of the following functions has a removable discontinuity at x = -3?

**A.** 
$$f(x) = \frac{x^2 - 9}{(x + 3)^2}$$

B. 
$$f(x) = \frac{x^3 + 27}{2x + 6}$$

C. 
$$f(x) = \frac{x^2+9}{x+3}$$

**A.** 
$$f(x) = \frac{x^2 - 9}{(x+3)^2}$$
 **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

**10.** The result of  $\lim_{x \to 3^{-}} \frac{2-x}{x-3}$  is: **A.**  $-\infty$  **B.**  $+\infty$  **C.** 0 **D.** -1

$$A.-\infty$$
 B

**11.** Find the result of  $\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$ 

**12.**Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases} \qquad \mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases} \qquad \mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{1}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

13. A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain  $(51200 \, m^2)$ . What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**A.** 
$$256 \, m$$
,  $200 \, m$ 

**D.** 320 m, 160 m

**14.** Find the equation of the line that passes through the point (-4,1) and perpendicular to

the y - axis . A. 
$$x + 4 = 0$$
 B.  $y - 4x = 0$  C.  $y - 1 = 0$ 

**B.** 
$$y - 4x =$$

C. 
$$y - 1 =$$

**D.** 
$$y + 3 = 0$$

**15.** Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ 

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

**B.** 
$$f'''(x) = \frac{24}{x^4}$$

C. 
$$f'''(x) = \frac{-96}{x^5}$$

$$f'''(x) = \frac{96}{x^5}$$

**16.** In a fireworks festival, a rocket is launched upward . The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket,  $\mathbf{t}$  is measured in seconds and  $\mathbf{S}$  in feet

What is the highest point the rocket can reach?

**17.**If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x^2}$ ?

**A.** 
$$x^2 - 2x$$

**B.** 
$$x^2 + 2x$$

**A.** 
$$x^2 - 2x$$
 **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$  **D.**  $x^2 - 2x + 4$ 

**D.** 
$$x^2 - 2x + 4$$

**18.** Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

**A.** 
$$\frac{1}{\sqrt{3}}$$

**A.** 
$$\frac{1}{\sqrt{3}}$$
 **B.**  $-\frac{1}{\sqrt{3}}$  **C.**  $-\frac{2}{\sqrt{3}}$  **D.**  $\frac{2}{\sqrt{3}}$ 

**19.** On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

$$\mathbf{A.}]-1$$
 ,  $1$  [

**A.**] 
$$-1$$
, 1 [ **B.**]  $-\infty$ ,  $-1$ [ **C.**]  $-1$ ,  $+\infty$ [ **D.** None

$$-\infty$$
 **D.** None

**20.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ .

$$\mathbf{A.} y =$$

$$\mathbf{B.}\;y=$$

$$y-\frac{1}{2}$$

**A.** 
$$y = 1$$
 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$  **D.**  $y = 0$ 

**D.** 
$$y = 0$$

**21.** Find the result of 
$$\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$$
. **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$ 

**A.** 
$$\frac{1}{\sqrt{10}}$$

$$\frac{1}{10}$$
 B

$$\overline{\frac{}{5}}$$
  $\mathbf{D} \cdot \overline{\frac{}{2\sqrt{5}}}$ 

**22.** For what value of  $\mathbf{a}$ , does the function  $f(x) = \begin{cases} \mathbf{a}x^2 + 1 & x \leq 2 \\ 2x - \mathbf{a} & x > 2 \end{cases}$ has no points of discontinuity?  $\mathbf{A} \cdot \frac{-3}{5} \quad \mathbf{B} \cdot \frac{-5}{3} \quad \mathbf{C} \cdot \frac{5}{3} \quad \mathbf{D} \cdot \frac{3}{5}$ 

**A.** 
$$\frac{-3}{5}$$

$$\mathbf{B}.\frac{3}{3}$$

$$\frac{\mathbf{R}}{3}$$

**23.**If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.** -2**24.** Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** 
$$x = -2$$

**B.** 
$$y = -2$$

**C.** 
$$y = -4$$

**D.** 
$$y = -2x - 8$$

**25.** Which of the following functions has no vertical asymptote at x = 2?

**A.** 
$$f(x) = \frac{x^2 - 4}{(x - 2)^2}$$
 **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$  **D.**  $f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$ 

**26.** The result of  $\lim_{\Delta x \to 0} \frac{-3(x+\Delta x)^2+3x^2}{\Delta x}$  is:

**A.**6*x* **B.**-6*x* **C.**3
$$x^2$$
 **D.** -3 $x^2$ 

$$C.3x^2$$

**D.** 
$$-3x$$

**27.** Which of the following functions is symmetric with respect to the y - axis?

**A.** 
$$x^2y - x^2 + 3y = 0$$
 **B.**  $y = \sqrt{x-4}$  **C.**  $y = |x+2| - 2$  **D.**  $x^2y - x = 0$ 

$$\mathbf{R} \ \mathbf{v} = \sqrt{\mathbf{r} - 4}$$

$$C.y = |x + 2| - 2$$

**D.** 
$$x^2y - x = 0$$

**28.** Find the derivative of the function  $f(x) = x e^x$ .

$$\mathbf{A.}\,f'(x)=e^x$$

**B.** 
$$f'(x) = e^x(x+1)$$

$$C.f'(x) = e^x + 1$$

**D.** 
$$f'(x) = xe^x + 1$$

**29.**Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph.

**A.** 
$$f(x) = \frac{x^2}{x^2 + 3}$$
 **B.**  $f(x) = \frac{x}{x^2 + 3}$  **C.**  $f(x) = \frac{x^2}{x^2 - 3}$  **D.**  $f(x) = \frac{x^2}{x^2 + 3}$ 

**B.** 
$$f(x) = \frac{x}{x^2 + 3}$$

$$\mathbf{C.}f(x) = \frac{x^2}{x^2 - 3}$$

**D.** 
$$f(x) = \frac{x^2 - 1}{x^2 + 3}$$



**30.** The line y = -4x + 7 passes through which of the following points?

**A.** 
$$(5,-3)$$
 **B.**  $(-3,5)$ 

$$B.(-3,5)$$

$$C.(2,-1)$$

$$\mathbf{D}.(-1,2)$$

**31.** Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....

**B.** Negative

**C.** Opposite

**D.** None

**32.**Use the given graph on the right

to find the result of  $\lim_{x\to 0^+} f(x)$ 

**A**. 0

**B.** -1

**C.** 2



33.If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

A. 
$$\frac{y+2x}{2y-x}$$

$$\mathbf{B} \cdot \frac{2x}{2y-x}$$

$$\mathbf{B}.\frac{2x}{2y-x} \qquad \qquad \mathbf{C}.\frac{y-2x}{2y-x}$$

**D.** 
$$\frac{-2x}{2y-x}$$

**34.**Which of the following is false?

**A**. The graph of a cubic function has exactly one point of inflection.

**B**.If 
$$f'(x) = g'(x)$$
, then  $f(x) = g(x)$ 

**C**. If 
$$g(x) = -5f(x)$$
, then  $g'(x) = -5f'(x)$ 

**D**. If 
$$y = \frac{2x}{\pi}$$
, then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

**35.** The result of  $\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2}$  is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$  **D.**  $\frac{1}{9}$ 

**36.** Use the given graph of the function y = f(x) on the right,

to determine the graph of the function y = -f(x-2)



**37.** Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

$$B.(2,0)$$
  $C.(0,0)$ 

**38.** The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?

$$A.\frac{3}{5}$$
  $B.\frac{2}{5}$  C.1

**D.** 2



**39.** The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain .

A. Increasing

**B.** Decreasing **C.** Concave

**D.** Convex

**40.** The given graph on the right shows the curve of the function f On which interval is f' increasing?

$$\mathbf{A.}\ ]-\infty$$
 ,0[

$$\mathbf{B}$$
.  $]0$ ,  $+\infty[$ 

C. ] 
$$-\infty$$
,  $0[\cup]0$ ,  $+\infty[$ 
D. ]  $-\infty$ ,  $+\infty[$ 
41. The result of  $\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$  is:
A. 0 B.-1

$$\mathbf{D}.\ ]-\infty$$
,  $+\infty$ 

**D.** Does not exist.

**42.**If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?

A. 
$$(f g' - f'g)' = f'g'' - f''g'$$
  
B.  $fg'' + f''g = (f g)''$   
C.  $(f'g')' = f''g''$   
D.  $(f g)'' = f g'' + 2f'g' + f''g$ 

B. 
$$fg'' + f''g = (fg)''$$

$$C.(f'g')' = f''g''$$

$$D.(f g)'' = f g'' + 2f'g' + f''g$$

**43.** The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases  $(18 cm^2/min)$ , what is the length of the side of the cube?

**B.** 4 *cm* **C.** 
$$2\sqrt{2}$$
 *cm*

**D.** 8 *cm* 

**44.** If f(x) = 2x - 4 and g(x) = 1 + 3x, find the value of x when f(x) = g(x).

**A.** 
$$x = -1$$
 **B.**  $x = 1$  **C.**  $x = 5$  **D.**  $x = -5$ 

**B.** 
$$x = 1$$

**C.** 
$$x = 5$$

**D.** 
$$x = -5$$

**45.** Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function 
$$f(x) = \frac{-k}{x}$$
. **A.**  $k = 2$  **B.**  $k = -2$  **C.**  $k = 3$  **D.**  $k = -3$ 

**A.** 
$$k = 2$$

$$\mathbf{B.}\;k=-$$

**C.** 
$$k = 3$$

**D.** 
$$k = -3$$

**46.**On which interval is the function  $f(x) = x^{\frac{2}{3}} - 4$  decreasing?

$$\mathbf{A} \cdot ] - \infty , 0 [$$

**B.** ] 
$$-\infty$$
, 4 [ **C.** ] 0,  $+\infty$ [

$$\mathbf{C}$$
. ] 0,  $+\infty$ 

**47.**Which of the following is true?

**A.** 
$$\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$$
 **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$ 

**B.** 
$$\lim_{x \to 2} \frac{3}{x-2} =$$

C. 
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} =$$

$$\mathbf{D.} \lim_{x \to 0} \frac{\sin x}{x} =$$

**48.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2,2]$$
 **B.**  $[0,2]$  **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.**  $[-2,0]$ 

**49.** Find the result of 
$$\lim_{x\to 0} \frac{\frac{5}{2x+10} - \frac{1}{2}}{x}$$
. **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$ 

$$r = \frac{1}{1}$$
 **D** 0

**50.**IF 
$$f(x) = 3ax^3 + 3$$
 is a function and  $f'(3) = -162$ , find the result of  $f(2)$ .

**B.** 
$$-51$$

Kurdistan Region – Iraq SN: 30000018 In the Name of Allah

Subject: Maths Time: 3:30 Hours

**High Committee for General Examinations** 

General exams for preparatory stage (science) For the Academic year (2020-2021) First attempt

Choose the correct option, two marks for each right answer

1. Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** 
$$x = -2$$

**B.** 
$$y = -2$$

**C.** 
$$y = -4$$

**D.** 
$$y = -2x - 8$$

2. Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph.



**B.** 
$$f(x) = \frac{x}{x^2 + 3}$$

$$\mathbf{C.}f(x) = \frac{x^2}{x^2 - 3}$$

**C.**
$$f(x) = \frac{x^2}{x^2 - 3}$$
 **D.**  $f(x) = \frac{x^2 - 1}{x^2 + 3}$ 



**3.** Which of the following graphs represents a function?







**4.** Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.



$$\mathbf{B.} \ g(x) = \begin{cases} x-1 \\ \sqrt{2} \\ x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x^2 + \sqrt{x}}}{x-1} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2 - x} - \sqrt{x}}{x - 1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

5. If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

**A.** 
$$\frac{y+2x}{2y-x}$$
 **B.**  $\frac{2x}{2y-x}$  **C.**  $\frac{y-2x}{2y-x}$ 

$$\mathbf{B} \cdot \frac{2x}{2y-x}$$

C. 
$$\frac{y-2x}{2y-x}$$

**D.** 
$$\frac{-2x}{2y-x}$$

**6.** Use the given graph of the function y = f(x) on the right, to determine the graph of the function y = -f(x-2)









7. If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

**A.** 
$$x^2 - 2x$$

**B.** 
$$x^2 + 2x$$

**A.** 
$$x^2 - 2x$$
 **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$ 

**D.** 
$$x^2 - 2x + 4$$

8. Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.









**9.** On which interval is the function  $f(x) = x^{\frac{2}{3}} - 4$  decreasing?

**A.** ] 
$$-\infty$$
 , 0 [ **B.** ]  $-\infty$  , 4 [

**B.** 
$$]-\infty$$
, 4

$$\mathbf{C}$$
. ] 0,  $+\infty$ [

**10.** Which of the following functions has a removable discontinuity at x = -3?

**A.** 
$$f(x) = \frac{x^2 - 9}{(x+3)^2}$$
 **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

**B.** 
$$f(x) = \frac{x^3 + 2x}{2x + 6}$$

C. 
$$f(x) = \frac{x}{x}$$

**D.** 
$$f(x) = \frac{|x+3|}{2x+6}$$

**11.**Which of the following is true?

**A.** 
$$\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$$
 **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$ 

**B.** 
$$\lim_{x\to 2} \frac{3}{x-2} = 3$$

C. 
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$$

$$\mathbf{D.} \lim_{x \to 0} \frac{\sin x}{x} = 0$$

**12.**Find the derivative of the function  $f(x) = x e^x$ .

$$\mathbf{A.}\,f'(x)=e^x$$

**A.** 
$$f'(x) = e^x$$
 **B.**  $f'(x) = e^x(x+1)$  **C.**  $f'(x) = e^x + 1$ 

$$\mathbf{C.}f'(x) = e^x + 1$$

**D.** 
$$f'(x) = xe^x + 1$$

13. Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function 
$$f(x) = \frac{-k}{x}$$
. **A.**  $k = 2$  **B.**  $k = -2$ 

$$\mathbf{A.}\,k=2$$

**B.** 
$$k = -1$$

**C.** 
$$k = 3$$

**C.** 
$$k = 3$$
 **D.**  $k = -3$ 

14. The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?



$$\mathbf{B} \cdot \frac{2}{5}$$

**C.**1

**D.** 2



**15.**Use the given graph on the right to find the result of  $\lim_{x\to 0^+} f(x)$ 

**B.** 
$$-1$$

**D.** Does not exist.



**16.** The given graph on the right shows the curve of the function f On which interval is f' increasing?

$$\mathbf{A.}] - \infty$$
 ,0[

**B.** 
$$]0,+\infty[$$

$$[\mathbf{C}, ] - \infty, 0[ \cup ]0, +\infty[$$
  $[\mathbf{D}, ] - \infty, +\infty[$ 

17. The result of 
$$\lim_{\Delta x \to 0} \frac{-3(x+\Delta x)^2+3x^2}{\Delta x}$$
 is:

$$\infty$$
,+ $\infty$ [

$$\mathbf{B}$$
. $-6x$ 

$$C.3x^2$$

**C.**
$$3x^2$$
 **D.**  $-3x^2$ 

**18.** Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ 

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

**B.** 
$$f'''(x) = \frac{24}{x^4}$$

$$\mathbf{C.}\,f'''(x) = \frac{1}{2}$$

**D.** 
$$f'''(x) = \frac{96}{x^5}$$

**19.** Find the equation of the line that passes through the point (-4,1) and perpendicular to

the 
$$y - axis$$
. **A.**  $x + 4 = 0$  **B.**  $y - 4x = 0$  **C.**  $y - 1 = 0$ 

**B.** 
$$y - 4z$$

C. 
$$y - 1 =$$

$$-1 = 0$$

**D.** 
$$y + 3 = 0$$



```
36. The result of \lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2} is: A. 9 B. -9 C. \frac{-1}{9}
```

**37.**If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?

A. 
$$(f g' - f'g)' = f'g'' - f''g'$$
  
B.  $fg'' + f''g = (f g)''$   
C.  $(f'g')' = f''g''$   
D.  $(f g)'' = f g'' + 2f'g' + f''g$ 

**38.** The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is : **A.** 0 **B.** -4 **C.** 4

**39.** Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

**A.** 
$$\frac{1}{\sqrt{3}}$$
 **B.**  $-\frac{1}{\sqrt{3}}$  **C.**  $-\frac{2}{\sqrt{3}}$  **D.**  $\frac{2}{\sqrt{3}}$ 

**40.** Which of the following functions is symmetric with respect to the y - axis?

**A.** 
$$x^2y - x^2 + 3y = 0$$
 **B.**  $y = \sqrt{x - 4}$  **C.**  $y = |x + 2| - 2$  **D.**  $x^2y - x = 0$ 

**41.**If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.** -2

**42.** Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)

**A.** 
$$\frac{3}{2}$$
 **B.**  $\frac{-3}{2}$  **C.**  $\frac{2}{3}$ 

43. A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain  $(51200 \, m^2)$ . What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**44.** Which of the following functions has no vertical asymptote at x = 2?

**A.** 
$$f(x) = \frac{x^2 - 4}{(x - 2)^2}$$
 **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$  **D.**  $f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$ 

**45.** In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet

What is the highest point the rocket can reach?

**A.** 404 ft **B.** 580 ft **C.** 606 ft **D.** 768 ft **46.** Find the result of 
$$\lim_{x\to 0} \frac{\frac{5}{2x+10}-\frac{1}{2}}{x}$$
 . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$  **D.** 0

**47.**On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

**48.** Find the result of 
$$\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$$
. **B.**  $\frac{1}{\sqrt{10}} = \frac{1}{\sqrt{5}} = \frac{1}{\sqrt{$ 

**49.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2, 2]$$
 **B.**  $[0, 2]$  **C.**  $]-\infty$   $[-2, 0]$ 

**A.** [-2,2] **B.** [0,2] **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.** [-2,0]

**50.** Determine the range of the function ffrom the given graph on the right.

Kurdistan Region – Iraq SN: 30000019 In the Name of Allah

High Committee for General Examinations

Subject: Maths Time: 3:30 Hours

General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Choose the correct option, two marks for each right answer

1. Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.







2. The result of  $\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$  is:

**A.** 0 **B.**-1

**D.** Does not exist.

3. For what value of a, does the function  $f(x) = \begin{cases} ax^2 + 1 & x \le 2 \\ 2x - a & x > 2 \end{cases}$  has no points

of discontinuity?  $\mathbf{A} \cdot \frac{-3}{5} \qquad \mathbf{B} \cdot \frac{-5}{3} \qquad \mathbf{C} \cdot \frac{5}{2} \qquad \mathbf{D} \cdot \frac{3}{5}$ 

**4.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ . **A.** y = 1 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$  **D.** y = 0

**A.** 
$$y = 1$$

**5.** Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)**A.**  $\frac{3}{2}$  **B.**  $\frac{-3}{2}$  **C.**  $\frac{2}{3}$ 

**A.** 
$$\frac{3}{2}$$

**6.** Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

**B.** (2,0)

**D.** None

7. Find the result of  $\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): A. 0 B. 1 C.  $\frac{1}{4}$  D.  $+\infty$ 

**8.** Find the result of  $\lim_{x\to 0} \frac{\frac{3}{2x+10} - \frac{1}{2}}{x}$ . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$ 

**9.** Determine the range of the function ffrom the given graph on the right.

$$A.[-2,2]$$

$$C.[-1,2]$$



**10.**Which of the following is true?

**A.** 
$$\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$$
 **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2-1}{x-1} = 0$ 

**B.** 
$$\lim_{x \to 2} \frac{3}{x-2} = 3$$

C. 
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$$

**D.**  $\lim_{x\to 0} \frac{\sin x}{x} = 0$ 

11. The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases (18  $cm^2/min$ ), what is the length of the side of the cube?

**B.** 4 *cm* 

C.  $2\sqrt{2}$  cm

**D.** 8 cm

**12.**Use the given graph on the right to find the result of  $\lim_{x\to 0^+} f(x)$ a. 0 **B.** -1 **C.** 2 **D.** Does not exist.





**13.** The result of  $\lim_{\Delta x \to 0} \frac{-3(x+\Delta x)^2+3x^2}{\Delta x}$  is :

 $\mathbf{A.6}x$ 

 $\mathbf{B}$ .-6x

**C.** $3x^2$  **D.**  $-3x^2$ 

**14.** Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

$$\mathbf{A.}f(x) = \frac{2x}{2x}$$

**A.** 
$$f(x) = \frac{2x}{3-x}$$
 **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

$$\mathbf{C.}\,f(x) = \frac{-4x^2 - 18x}{2x - 6}$$

**15.**Which of the following functions is symmetric with respect to the y - axis?

**A.** 
$$x^2y - x^2 + 3y = 0$$
 **B.**  $y = \sqrt{x-4}$  **C.**  $y = |x+2| - 2$  **D.**  $x^2y - x = 0$ 

**B.** 
$$y = \sqrt{x - 4}$$

$$C.y = |x + 2| - 2$$

**D.** 
$$x^2y - x = 0$$

**16.**The result of 
$$\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2}$$
 is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$  **D.**  $\frac{1}{9}$ 

$$-\frac{1}{9}$$

$$\mathbf{D}.\frac{1}{9}$$

17. The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain.

**A.** Increasing

**B.** Decreasing **C.** Concave **D.** Convex

**18.** Find the result of  $\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$ . **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$ 

**19.** Which of the following functions has a removable discontinuity at x = -3?

**A.** 
$$f(x) = \frac{x^2 - 9}{(x+3)^2}$$
 **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

**20.** In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet

What is the highest point the rocket can reach?

**A.** 404 ft

**B.** 580 ft **C.** 606 ft **D.** 768 ft

**21.** If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

**A.** 
$$\frac{y+2x}{2y-x}$$
 **B.**  $\frac{2x}{2y-x}$  **C.**  $\frac{y-2x}{2y-x}$  **D.**  $\frac{-2x}{2y-x}$ 

**22.** Find the derivative of the function  $f(x) = x e^x$ .

**A.** 
$$f'(x) = e^x$$

**B.** 
$$f'(x) = e^x(x+1)$$

$$C.f'(x) = e^x + 1$$

**D.**  $f'(x) = xe^x + 1$ 

**23.**If f and g are two differentiable function for all x, and so are their derivatives.

Which of the following is true?

A. 
$$(f g' - f'g)' = f'g'' - f''g'$$
 B.  $fg'' + f''g = (f g)''$ 

B. 
$$fg'' + f''g = (fg)''$$

$$f'(g')' = f''g''$$

$$C.(f'g')' = f''g''$$
  $D.(fg)'' = fg'' + 2f'g' + f''g$ 

**24.**On which interval is the function  $f(x) = x^{\frac{2}{3}} - 4$  decreasing?

$$\mathbf{A}.] - \infty, 0$$

$$\mathbf{B}$$
,  $1-\infty$ , 4

$$[\mathbf{A.}] - \infty$$
, 0  $[\mathbf{B.}] - \infty$ , 4  $[\mathbf{C.}]$  0,  $+\infty$ 

**D.** None

**25.** Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function  $f(x) = \frac{-k}{x}$ . **A.** k = 2 **B.** k = -2 **C.** k = 3 **D.** k = -3

$$\mathbf{A.}\,k=2$$

**B.** 
$$k = -2$$

**C.** 
$$k = 3$$

**D.** 
$$k = -3$$

**26.**Which of the following is false?

**A**. The graph of a cubic function has exactly one point of inflection.

**B**.If 
$$f'(x) = g'(x)$$
, then  $f(x) = g(x)$ 

**C**. If 
$$g(x) = -5f(x)$$
, then  $g'(x) = -5f'(x)$ 

**D**. If 
$$y = \frac{2x}{\pi}$$
, then  $\frac{dy}{dx} = \frac{2}{\pi}$ 



**A.** 
$$f(x) = \frac{x^2}{x^2 + 3}$$
 **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

$$\mathbf{B.}\,f(x) = \frac{x}{x^2 + 3}$$

$$\mathbf{C.}f(x) = \frac{x^2}{x^2 - 3}$$

**C.**
$$f(x) = \frac{x^2}{x^2 - 3}$$
 **D.**  $f(x) = \frac{x^2 - 1}{x^2 + 3}$ 



**28.** Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ .

Find  $\frac{dx}{dt}$  at x=2, by knowing that  $\frac{dy}{dt}=-3$ .

A. 
$$\frac{1}{4}$$

$$\mathbf{B} \cdot \frac{-1}{4}$$

$$C.\frac{1}{2}$$

A. 
$$\frac{1}{4}$$
 B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

**29.** Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....

**A.** Positive

- **B.** Negative
- **C.** Opposite
- **30.** If f(x) = 2x 4 and g(x) = 1 + 3x, find the value of x when f(x) = g(x).

**A.** 
$$x = -1$$
 **B.**  $x = 1$  **C.**  $x = 5$ 

**B.** 
$$x = 1$$

$$C \sim -$$

**D.** 
$$x = -5$$

31. A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain  $(51200 \, m^2)$ . What dimensions would be required for the least amount of fencing if

**A.**  $256 \, m$ ,  $200 \, m$ 

- **B.** 400 m, 128 m **C.** 512 m, 100 m
- **D.** 320 m, 160 m
- **32.**The given graph on the right shows the curve of the function f On which interval is f' increasing?



$$\mathbf{B.}\ ]0$$
,  $+\infty[$ 

C. ] 
$$-\infty$$
,0[  $\cup$  ]0,  $+\infty$ [ D. ]  $-\infty$ ,  $+\infty$ [

$$\left[ \mathbf{D}_{\cdot} \right] - \infty$$
 ,  $+\infty$ 

- **33.** Find the third derivative of the function  $f(x) = \frac{x^3 3x^2 + 4}{x^2}$ .

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

fencing is not needed along the river.

**B.** 
$$f'''(x) = \frac{24}{x^4}$$

C. 
$$f'''(x) = \frac{-96}{x^5}$$

**D.** 
$$f'''(x) = \frac{96}{x^5}$$

**34.**On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

$$A.] - 1,1[$$

**B.** 
$$] - \infty$$
,  $-1[$  **C.**  $] - 1$ ,  $+\infty[$  **D.** None

$$C_{ij} = 1, +\infty$$

**35.**If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.**  $-2\pi$ 

**36.** The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is : **A.** 0 **B.** -4 **37.** The result of  $\lim_{x \to 3^-} \frac{2 - x}{x - 3}$  is : **A.**  $-\infty$  **B.**  $+\infty$  **C.** 0 **D.** 

- **38.** The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?



- **D.** 2



**39.**If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

**A.** 
$$x^2 - 2x$$

**B.** 
$$x^2 + 2x$$

**A.** 
$$x^2 - 2x$$
 **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$ 

**D.** 
$$x^2 - 2x + 4$$

**40.** The line y = -4x + 7 passes through which of the following points?

**A.** 
$$(5,-3)$$
 **B.**  $(-3,5)$  **C.**  $(2,-1)$ 

$$B.(-3,5)$$

$$C.(2,-1)$$

 $\mathbf{D} \cdot (-1,2)$ 

**41.** Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

**A.** 
$$\frac{1}{\sqrt{3}}$$
 **B.**  $-\frac{1}{\sqrt{3}}$  **C.**  $-\frac{2}{\sqrt{3}}$  **D.**  $\frac{2}{\sqrt{3}}$ 

**42.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2,2]$$

**A.** 
$$[-2,2]$$
 **B.**  $[0,2]$  **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.**  $[-2,0]$ 

**D.** 
$$[-2,0]$$

**43.**Use the given graph of the function y = f(x) on the right,

to determine the graph of the function y = -f(x-2)



**44.**IF  $f(x) = 3ax^3 + 3$  is a function and f'(3) = -162, find the result of f(2).

**B.** 
$$-51$$

**45.** Which of the following functions has no vertical asymptote at x = 2?

**A.** 
$$f(x) = \frac{x^2 - 4}{(x - 2)^2}$$
 **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$ 

**B.** 
$$f(x) = \frac{x+2}{x^2-1}$$

C. 
$$f(x) = \frac{x^2+4}{x^2-3x}$$

$$\mathbf{D}.f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$$

**46.** Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** 
$$x = -2$$

**B.** 
$$y = -2$$

**C.** 
$$y = -4$$

**D.** 
$$y = -2x - 8$$

**47.**Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ -1 & x = 1 \end{cases}$$

- **48.** Find the equation of the line that passes through the point (-4,1) and perpendicular to the y - axis. A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0**D.** y + 3 = 0
- **49.**Which of the following graphs represents a function?



- **50.** Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$ .
- **A.** -3
- **B.** 3
  - $C_{\bullet} + \infty$
- **D.** 0

Kurdistan Region – Iraq SN: 30000020 In the Name of Allah Subject: Maths Time: 3:30 Hours High Committee for General Examinations General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Choose the correct option, two marks for each right answer

**1.** For what value of  $\mathbf{a}$ , does the function  $f(x) = \begin{cases} \mathbf{a}x^2 + 1 & x \le 2 \\ 2x - \mathbf{a} & x > 2 \end{cases}$ has no points of discontinuity?  $\mathbf{A} \cdot \frac{-3}{5} \qquad \mathbf{B} \cdot \frac{-5}{3} \qquad \mathbf{C} \cdot \frac{5}{3} \qquad \mathbf{D} \cdot \frac{3}{5}$ 

2. On which interval is the function  $f(x) = x^{\frac{2}{3}} - 4$  decreasing?

 $[\mathbf{A}, ] - \infty, 0 [ \mathbf{B}, ] - \infty, 4 [$ 

 $\mathbf{C}$ .  $]0,+\infty[$ 

**D.** None

**3.** Use the given graph of the function y = f(x) on the right, to determine the graph of the function y = -f(x - 2)



**4.** If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?

A. (f g' - f'g)' = f'g'' - f''g' B. fg'' + f''g = (f g)''C.(f'g')' = f''g'' D.(fg)'' = fg'' + 2f'g' + f''g'

5. Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

A.(1,0)

**B.** (2,0)

 $\mathbf{C}.(0,0)$ 

**D.** None

**6.** Find the result of  $\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$ 

7. The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases  $(18 cm^2/min)$ , what is the length of the side of the cube?

**A.** 2 cm

**B.** 4 *cm* 

C.  $2\sqrt{2}$  cm

**D.** 8 cm

**8.** Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.

 $\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$   $\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$   $\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x \neq 1 \end{cases}$   $\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x \neq 1 \end{cases}$ 

**9.** The result of  $\lim_{\Delta x \to 0} \frac{-3(x+\Delta x)^2+3x^2}{\Delta x}$  is:

 $\mathbf{A.6}x$ 

**B.**-6*x* **C.**3 $x^2$  **D.** -3 $x^2$ 

**10.** Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

A.  $\frac{1}{\sqrt{2}}$  B.  $-\frac{1}{\sqrt{2}}$  C.  $-\frac{2}{\sqrt{2}}$  D.  $\frac{2}{\sqrt{2}}$ 

**11.** Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$ . **A.** -3

0020 **A.** x = -2

**B.** 3 **C.**  $+\infty$  **D.** 0

12. Find the equation of a line passing through the points (-2, -4) and (-2, 4). **B.** y = -2 **C.** y = -4

**13.**Use the given graph on the right to find the result of  $\lim_{x \to 0^+} f(x)$ 

**A**. 0 **B.** -1 **C.** 2

**D.** Does not exist.



**14.** Find the result of  $\lim_{x \to 0} \frac{\frac{5}{2x+10} - \frac{1}{2}}{x}$ . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$ **D**. 0

15. Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph.

**A.**  $f(x) = \frac{x^2}{x^2 + 3}$  **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

 $\mathbf{C}.f(x) = \frac{x^2}{x^2 - 3}$   $\mathbf{D}.f(x) = \frac{x^2 - 1}{x^2 + 2}$ 



**16.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** [-2,2] **B.** [0,2] **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.** [-2,0]

**17.** Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)

A.  $\frac{3}{2}$  B.  $\frac{-3}{2}$  C.  $\frac{2}{3}$ 

**18.** Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ .

Find  $\frac{dx}{dt}$  at x = 2, by knowing that  $\frac{dy}{dt} = -3$ .

A.  $\frac{1}{4}$  B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

**19.**The result of  $\lim_{x \to 3^{-}} \frac{2-x}{x-3}$  is: **A.**  $-\infty$  **B.**  $+\infty$  **C.** 0 **D.** -1

**20.** Find the equation of the line that passes through the point (-4,1) and perpendicular to the y - axis . A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0**D.** y + 3 = 0

**21.**On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

**A.**] -1, 1 [ **B.**]  $-\infty$ , -1[ **C.**] -1,  $+\infty$ [ **D.** None

22. Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function  $f(x) = \frac{-k}{x}$ . **A.** k = 2 **B.** k = -2 **C.** k = 3 **D.** k = -3

**23.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ .

**A.** y = 1 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$  **D.** y = 0

**24.** Find the result of  $\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$ . **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$ 

**25.**The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?

 $\mathbf{A} \cdot \frac{3}{5}$   $\mathbf{B} \cdot \frac{2}{5}$ 

**C.**1

**D**. 2



**A.**  $256 \, m$ ,  $200 \, m$ 

**B.** 400 m, 128 m **C.** 512 m, 100 m

**D.** 320 m, 160 m

**27.**Which of the following graphs represents a function?



**28.** Find the derivative of the function  $f(x) = x e^x$ .

**A.**  $f'(x) = e^x$ 

**D.**  $f'(x) = xe^x + 1$ 

**29.**If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.** -2

**30.** Which of the following functions is symmetric with respect to the y - axis?

**A.**  $x^2y - x^2 + 3y = 0$  **B.**  $y = \sqrt{x-4}$  **C.** y = |x+2| - 2 **D.**  $x^2y - x = 0$ 

**31.** The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is :

**A.** 0 **B.**-4 **C.** 4 **D.**  $\frac{4}{5}$ 

**32.** Which of the following functions has a removable discontinuity at x = -3?

**A.**  $f(x) = \frac{x^2 - 9}{(x+3)^2}$  **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

33. If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

A.  $\frac{y+2x}{2y-x}$  B.  $\frac{2x}{2y-x}$  C.  $\frac{y-2x}{2y-x}$ 

**34.** The result of  $\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2}$  is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$  **D.**  $\frac{1}{9}$ 

**35.** The given graph on the right shows the curve of the function fOn which interval is f' increasing?



**B.**  $]0,+\infty[$ 

**C.** ]  $-\infty$ ,0[  $\cup$  ]0,  $+\infty$ [

 $\mathbf{D}$ .  $]-\infty$ ,  $+\infty$ 



**36.** Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....

**A.** Positive

**B.** Negative

C. Opposite

37. If f(x) = 2x - 4 and g(x) = 1 + 3x, find the value of x when f(x) = g(x).

**A.** x = -1 **B.** x = 1

**C.** x = 5

**D.** x = -5

**38.** In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet What is the highest point the rocket can reach?

**A.** 404 ft

**B.** 580 ft **C.** 606 ft **D.** 768 ft

**D.** None

**39.**Which of the following is true?

 $\mathbf{A.} \lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$ 

**B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2-1}{x-1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$ 

**40.**IF  $f(x) = 3ax^3 + 3$  is a function and f'(3) = -162, find the result of f(2).

**B.** -51

**C.** 51

**41.**The line y = -4x + 7 passes through which of the following points?

**A.** (5, -3) **B.** (-3, 5)

C.(2,-1)

 $\mathbf{D} \cdot (-1.2)$ 

**42.** Which of the following functions has no vertical asymptote at x = 2?

**A.**  $f(x) = \frac{x^2 - 4}{(x - 2)^2}$  **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$ 

**D**  $f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$ 

**43.** The result of  $\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$  is:

**A.** 0 **B.**-1 **C.**-2

**D.** Does not exist.

**44.**Which of the following is false?

**A**. The graph of a cubic function has exactly one point of inflection.

**B**.If f'(x) = g'(x), then f(x) = g(x)

**C**. If g(x) = -5f(x), then g'(x) = -5f'(x)

**D**. If  $y = \frac{2x}{\pi}$ , then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

**45.**If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

**A.**  $x^2 - 2x$  **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$ 

**D.**  $x^2 - 2x + 4$ 

**46.** Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

**A.**  $f(x) = \frac{2x}{3-x}$  **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

**47.** Determine the range of the function f

from the given graph on the right.



**48.** The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain .

A. Increasing

**B.** Decreasing **C.** Concave

**D.** Convex

**49.** Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.









**50.** Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ .

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$

**A.**  $f'''(x) = \frac{-24}{x^4}$  **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

Kurdistan Region – Iraq SN: 30000021 In the Name of Allah Subject: Maths Time: 3:30 Hours **High Committee for General Examinations** General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Choose the correct option, two marks for each right answer

1. The line y = -4x + 7 passes through which of the following points?

**A.** 
$$(5,-3)$$
 **B.**  $(-3,5)$ 

$$B. (-3, 5)$$

$$C.(2,-1)$$

$$\mathbf{D} \cdot (-1,2)$$

**2.** Find the derivative of the function  $f(x) = x e^x$ .

**A.** 
$$f'(x) = e^x$$

$$\mathbf{R}_{\cdot}f'(\cdot)$$

**B.** 
$$f'(x) = e^x(x+1)$$

$$\mathbf{C}.f'(x) = e^x + 1$$

**D.** 
$$f'(x) = xe^x + 1$$

3. IF 
$$f(x) = 3ax^3 + 3$$
 is a function and  $f'(3) = -162$ , find the result of  $f(2)$ .

**B.** 
$$-51$$

- **4.** Find the equation of the line that passes through the point (-4,1) and perpendicular to the y - axis . A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0
- 5. Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** 
$$x = -2$$

**B.** 
$$v = -2$$

**B.** 
$$y = -2$$
 **C.**  $y = -4$ 

**D.** 
$$v = -2x - 8$$

**6.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2, 2]$$

**A.** 
$$[-2,2]$$
 **B.**  $[0,2]$  **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.**  $[-2,0]$ 

7. Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.









8. In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet What is the highest point the rocket can reach?

**C.**-2

- **9.** The result of  $\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$  is: **A.** 0 **B.**-1

- **D.** Does not exist.
- **10.** The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases  $(18 \text{ cm}^2/\text{min})$ , what is the length of the side of the cube?

C. 
$$2\sqrt{2}$$
 cm

11. Which of the following functions has a removable discontinuity at x = -3?

**A.** 
$$f(x) = \frac{x^2 - 9}{(x+3)^2}$$
 **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

**B.** 
$$f(x) = \frac{x^3 + 2^4}{2x + 6}$$

C. 
$$f(x) = \frac{x^2 + 9}{x + 3}$$

**D.** 
$$f(x) = \frac{|x+3|}{2x+6}$$

**12.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ 

$$\mathbf{A}$$
,  $v = 1$ 

**B.** 
$$y = \frac{-3}{2}$$

**A.** 
$$y = 1$$
 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$ 

**D.** 
$$y = 0$$

13. Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....

**14.** Find the result of 
$$\lim_{x\to 0} \frac{\frac{5}{2x+10} - \frac{1}{2}}{x}$$
. **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$  **D**.

- **15.** Find the result of  $\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$
- **16.** The result of  $\lim_{x \to -2} \frac{\frac{1}{1-x} \frac{1}{3}}{x+2}$  is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$  **D.**  $\frac{1}{9}$

- **17.**On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

$$[A.] - 1,1[$$

$$[B.] - \infty$$
,  $-1$ 

**A.**] 
$$-1$$
, 1 [ **B.**]  $-\infty$ ,  $-1$ [ **C.**]  $-1$ ,  $+\infty$ [ **D.** None

**18.** Find the slope of the tangent line to the graph 
$$y^2 = \frac{x+1}{x-1}$$
 at the point  $(2, \sqrt{3})$ .

**A.** 
$$\frac{1}{\sqrt{3}}$$

**B.** 
$$-\frac{1}{\sqrt{3}}$$

**A.** 
$$\frac{1}{\sqrt{3}}$$
 **B.**  $-\frac{1}{\sqrt{3}}$  **C.**  $-\frac{2}{\sqrt{3}}$  **D.**  $\frac{2}{\sqrt{3}}$ 

**D.** 
$$\frac{2}{\sqrt{3}}$$

**19.**Use the given graph of the function y = f(x) on the right, to determine the graph of the function y = -f(x-2)



**20.** Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ 

Find 
$$\frac{dx}{dt}$$
 at  $x = 2$ , by knowing that  $\frac{dy}{dt} = -3$ .

A. 
$$\frac{1}{4}$$

**B.** 
$$\frac{-1}{4}$$

A. 
$$\frac{1}{4}$$
 B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

**D**. 
$$\frac{-1}{2}$$

**21.** Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function 
$$f(x) = \frac{-k}{x}$$
. **A.**  $k = 2$  **B.**  $k = -2$  **C.**  $k = 3$ 

**A.** 
$$k = 2$$

**B.** 
$$k = -2$$

**C.** 
$$k = 3$$

$$\mathbf{D.} \ \mathbf{K} = -3$$

**22.**Which of the following is true?

**A.** 
$$\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$$
 **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$ 

**B.** 
$$\lim_{x\to 2} \frac{3}{x-2} = 3$$

C. 
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$$

$$\mathbf{D.} \lim_{x \to 0} \frac{\sin x}{x} = 0$$

**23.**Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ -1 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{1}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \hline x-1 & x \neq 1 \\ 0 & x = 1 \end{cases}$$

**D.** 
$$g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq \\ -1 & x = \end{cases}$$

**24.** Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

**A.** 
$$(1,0)$$
 **B.**  $(2,0)$  **C.**  $(0,0)$ 

**25.** Which of the following functions is symmetric with respect to the y - axis?

$$x^2y - x^2 + 3y = 0$$

**B.** 
$$y = \sqrt{x - 4}$$

**A.** 
$$x^2y - x^2 + 3y = 0$$
 **B.**  $y = \sqrt{x-4}$  **C.**  $y = |x+2| - 2$  **D.**  $x^2y - x = 0$ 

$$x.y = |x + 2| - 2$$
 **D.**  $x^2y - x =$ 

**26.**If f and g are two differentiable function for all x, and so are their derivatives.

Which of the following is true?

A. 
$$(f g' - f'g)' = f'g'' - f''g'$$

B. 
$$fg'' + f''g = (fg)''$$

$$C.(f'g')' = f''g''$$

D. 
$$(f g)'' = f g'' + 2f'g' + f''g$$



A.[-2,2]

**D**. [0, 2]



#### **28.**Which of the following is false?

C.[-1,2]

**A**. The graph of a cubic function has exactly one point of inflection.

**B**.If 
$$f'(x) = g'(x)$$
, then  $f(x) = g(x)$ 

**C**. If 
$$g(x) = -5f(x)$$
, then  $g'(x) = -5f'(x)$ 

**D**. If 
$$y = \frac{2x}{\pi}$$
, then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

**29.**If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

**A.** 
$$x^2 - 2x$$

**A.**  $x^2 - 2x$  **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$ 

**D.** 
$$x^2 - 2x + 4$$

**A.** 
$$f(x) = \frac{x^2}{x^2 + 3}$$
 **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

$$\mathbf{B.}\,f(x) = \frac{x}{x^2 + 3}$$

$$\mathbf{C.}f(x) = \frac{x^2}{x^2 - 3}$$

**C.**
$$f(x) = \frac{x^2}{x^2 - 3}$$
 **D.**  $f(x) = \frac{x^2 - 1}{x^2 + 3}$ 



**31.**If 
$$x^2 - xy + y^2 = 1$$
 then which of the following is equal to  $\frac{dy}{dx}$ ?

A. 
$$\frac{y+2x}{2y-x}$$

A.  $\frac{y+2x}{2y-x}$  B.  $\frac{2x}{2y-x}$  C.  $\frac{y-2x}{2y-x}$ 

**D.**  $\frac{-2x}{2y-x}$ 

### **32.**Which of the following graphs represents a function?





# **33.**Use the given graph on the right to find the result of $\lim_{x\to 0^+} f(x)$

**A**. 0

**B.** -1

**D.** Does not exist.



## **34.** A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain $(51200 \, m^2)$ . What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**A.**  $256 \, m$ ,  $200 \, m$ 

**B.** 400 m, 128 m **C.** 512 m, 100 m

**D.** 320 m, 160 m

$$A.\frac{3}{5}$$
  $B.\frac{2}{5}$ 

**C.**1

**D.** 2

**36.** The result of 
$$\lim_{\Delta x \to 0} \frac{-3(x+\Delta x)^2+3x^2}{\Delta x}$$
 is:

**A.**6x **B.**-6x **C.**3 $x^2$  **D.**  $-3x^2$ 

**37.** Find the value of **b** when the distance between the point (1, -3) and the line 
$$3x - by = 5$$
 is  $(zero)$ 

A. 
$$\frac{3}{2}$$
 B.  $\frac{-3}{2}$  C.  $\frac{2}{3}$ 

**38.** The result of 
$$\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$$
 is : **A.** 0 **B.** -4 **C.** 4 **30.** Find the result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is : **A.** 1 **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{2}$  **D.**  $\frac{1}{2}$ 

**39.** Find the result of 
$$\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$$
. **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$ 

**40.**If 
$$f(x) = 2 (sinx) (cosx)$$
, find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.**  $-2$ 

**41.** Find the third derivative of the function 
$$f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$$

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$

**A.**  $f'''(x) = \frac{-24}{x^4}$  **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

**42.** The given graph on the right shows the curve of the function 
$$f$$
 On which interval is  $f'$  increasing?

$$\mathbf{A.} \, ] - \infty \, , 0 [$$

**B.**  $]0,+\infty[$ 

$$[\mathbf{C}, ] - \infty, 0[\cup]0, +\infty[$$
 $[\mathbf{D}, ] - \infty, +\infty[$ 

**C.** 0

**D.** -1

**43.** The result of 
$$\lim_{x \to 3^-} \frac{2-x}{x-3}$$
 is: **A.**  $-\infty$  **B.**  $+\infty$  **C.** 0 **44.** Which of the following functions has a vertical asymptote at  $x = 3$  and

slant asymptote at 
$$y = -2x$$
?  
 $\mathbf{A} \cdot f(x) = \frac{2x}{3-x}$   $\mathbf{B} \cdot f(x) = \frac{-2x^2 + 6x + 1}{x-3}$   $\mathbf{C} \cdot f(x) = \frac{-4x^2 - 18x}{2x-6}$   $\mathbf{D} \cdot f(x) = \frac{-x^2 + 12x}{x-3}$ 

**45.** The function 
$$f(x) = \frac{-1}{x+2}$$
 is always ..... in its domain .

**B.** Decreasing **C.** Concave

**46.** Which of the following functions has no vertical asymptote at x = 2?

**A.** 
$$f(x) = \frac{x^2 - 4}{(x - 2)^2}$$
 **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$  **D.**  $f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$ 

**47.** Find the result of 
$$\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$$
.

**A.** 
$$-3$$

**B.** 3 **C.**  $+\infty$  **D.** 0

**48.**If 
$$f(x) = 2x - 4$$
 and  $g(x) = 1 + 3x$ , find the value of x when  $f(x) = g(x)$ .

**A.** 
$$x = -1$$
 **B.**  $x = 1$  **C.**  $x = 5$  **D.**  $x = -5$ 

**B.** 
$$x = 1$$

$$\mathbf{C}. x =$$

**D.** 
$$x = -5$$

**49.**On which interval is the function 
$$f(x) = x^{\frac{2}{3}} - 4$$
 decreasing?

$$[\mathbf{A}, ] - \infty, 0 [ \quad \mathbf{B}, ] - \infty, 4 [ \quad \mathbf{C}, ] 0, +\infty [$$

$$\mathbf{B}.]-\infty$$
, 4

$$C.]0,+0$$

**D.** None

**50.** For what value of 
$$a$$
, does the function  $f(x) = \begin{cases} ax^2 + 1 & x \le 2 \\ 2x - a & x > 2 \end{cases}$  has no points

of discontinuity?

A.  $\frac{-3}{5}$  B.  $\frac{-5}{3}$  C.  $\frac{5}{3}$  D.  $\frac{3}{5}$ 

Kurdistan Region – Iraq SN: 30000022 In the Name of Allah

Subject: Maths Time: 3:30 Hours

**High Committee for General Examinations** General exams for preparatory stage (science) For the Academic year (2020-2021) First attempt

Choose the correct option, two marks for each right answer

1. If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

A. 
$$\frac{y+2x}{2y-x}$$

$$\mathbf{B}.\frac{2x}{2y-x}$$

**A.** 
$$\frac{y+2x}{2y-x}$$
 **B.**  $\frac{2x}{2y-x}$  **C.**  $\frac{y-2x}{2y-x}$ 

**D.** 
$$\frac{-2x}{2y-x}$$

2. Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ .

**A.** 
$$y = 1$$

**B.** 
$$y = \frac{-3}{3}$$

**A.** 
$$y = 1$$
 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$ 

**D.** 
$$y = 0$$

**3.** Find the result of  $\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$ . **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$ 

$$\mathbf{A} \cdot \frac{1}{\sqrt{10}}$$

$$2\sqrt{5}$$
 C.

$$\mathbf{D} \cdot \frac{1}{2\sqrt{5}}$$

$$\mathbf{D} \cdot \frac{4}{5}$$

$$\mathbf{C}$$
 . Les

4. The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is:

A. 0

B.-4

C. 4

D.  $\frac{4}{5}$ 5. The result of  $\lim_{x \to 0} \frac{-x}{\sqrt{x+1} - 1}$  is:

A. 0

B.-1

C.-2

D. Does not exist.

6. Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2 + 1}}$ .

A. -3

B. 3

C. +\infty

D. 0

7. The result of  $\lim_{\Delta x \to 0} \frac{-3(x + \Delta x)^2 + 3x^2}{\Delta x}$  is:

A. 6x

B. -6x

C. 3x<sup>2</sup>

D. -3x<sup>2</sup>

A. 6x

$$\mathbf{B}$$
. $-6x$ 

$$\mathbf{C}.3x$$

**D.** 
$$-3x$$

**8.** Which of the following is true?

**A.** 
$$\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$$
 **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$ 

**B.** 
$$\lim_{x \to 2} \frac{3}{x-2}$$

$$\mathbf{C.} \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$$

$$\mathbf{D.} \lim_{x \to 0} \frac{\sin x}{x} = 0$$

**9.** Which of the following functions is symmetric with respect to the y - axis?

**A.** 
$$x^2y - x^2 + 3y = 0$$
 **B.**  $y = \sqrt{x-4}$  **C.**  $y = |x+2| - 2$  **D.**  $x^2y - x = 0$ 

**B.** 
$$y = \sqrt{x - 4}$$

$$C.y = |x + 2| - 2$$

**D.** 
$$x^2y - x = 0$$

**10.**IF  $f(x) = 3ax^3 + 3$  is a function and f'(3) = -162, find the result of f(2).

**A.** 2 **B.** 
$$-51$$

$$D. - 45$$

**11.**Use the given graph on the right





**12.**Use the given graph of the function y = f(x) on the right, to determine the graph of the function y = -f(x-2)



**13.**Which of the following is false?

**A**. The graph of a cubic function has exactly one point of inflection.

**B**.If f'(x) = g'(x), then f(x) = g(x)

**C**. If g(x) = -5f(x), then g'(x) = -5f'(x)

**D**. If 
$$y = \frac{2x}{\pi}$$
, then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

**14.**Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.

**A.** 
$$g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

**B.** 
$$g(x) = \begin{cases} \frac{\sqrt{2} - x - \sqrt{x}}{x - 1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ -1 & x = 1 \end{cases}$$

**15.** Find the result of  $\lim_{x\to 0} \frac{\frac{5}{2x+10}-\frac{1}{2}}{x}$ . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$ 

. 
$$A.\frac{5}{2}$$

**16.** The result of  $\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2}$  is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$ 

**17.** Determine the range of the function ffrom the given graph on the right.



**18.** In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet What is the highest point the rocket can reach?

**A.** 404 ft

**B.** 580 ft **C.** 606 ft **D.** 768 ft

**19.** The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain .

**A.** Increasing **B.** Decreasing **C.** Concave **D.** Convex

**20.** For what value of a, does the function  $f(x) = \begin{cases} ax^2 + 1 & x \le 2 \\ 2x - a & x > 2 \end{cases}$  has no points

of discontinuity?

**A.**  $\frac{-3}{5}$  **B.**  $\frac{-5}{3}$  **C.**  $\frac{5}{3}$  **D**  $\frac{3}{5}$ 

**21.** Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.









**22.** Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

**A.**  $f(x) = \frac{2x}{3-x}$  **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

23. The line y = -4x + 7 passes through which of the following points?

**A.** (5, -3) **B.** (-3, 5)

C.(2,-1)

 $\mathbf{D} \cdot (-1,2)$ 

**24.** The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?



**C.**1

**D.** 2



$$\mathbf{A.}] - 1$$
 ,  $1$  [

$$[3.] - \infty$$
,  $-1[$ 

**B.** ] 
$$-\infty$$
,  $-1$ [ **C.**]  $-1$ ,  $+\infty$ [ **D.** None

**26.** The given graph on the right shows the curve of the function fOn which interval is f' increasing?



$$\mathbf{B}$$
.  $]0$ ,  $+\infty[$ 

$$\mathbf{D} \cdot ] - \infty , + \infty [$$

27. The result of 
$$\lim_{x\to 3^-} \frac{2-x}{x-3}$$
 is: A.  $-\infty$  B.  $+\infty$ 

$$A. -\infty B. +\infty$$

**28.** Which of the following functions has a removable discontinuity at x = -3?

**A.** 
$$f(x) = \frac{x^2 - 9}{(x+3)^2}$$

**B.** 
$$f(x) = \frac{x^3 + 27}{2x + 6}$$

C. 
$$f(x) = \frac{x^2+9}{x+3}$$

**A.** 
$$f(x) = \frac{x^2 - 9}{(x+3)^2}$$
 **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

- **29.** Find the result of  $\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$
- **30.** Which of the following functions has no vertical asymptote at x = 2?

$$\mathbf{A.}\,f(x) = \frac{x^2 - 4}{(x - 2)^2}$$

**B.** 
$$f(x) = \frac{x+2}{x^2-4}$$

**A.** 
$$f(x) = \frac{x^2 - 4}{(x - 2)^2}$$
 **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$ 

**D** 
$$f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$$

**31.**If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

**A.** 
$$x^2 - 2x$$

**B.** 
$$x^2 + 2x$$

**A.** 
$$x^2 - 2x$$
 **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$ 

**D.** 
$$x^2 - 2x + 4$$

**32.** Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

- 33. Find the equation of the line that passes through the point (-4,1) and perpendicular to the y - axis . A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0**D.** y + 3 = 0
- **34.**Which of the following graphs represents a function?







35. Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph.

**A.** 
$$f(x) = \frac{x^2}{x^2 + 3}$$
 **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

$$\mathbf{B.}\,f(x) = \frac{x}{x^2 + 3}$$

$$\mathbf{C.}f(x) = \frac{x^2}{x^2 - 3}$$

**C.**
$$f(x) = \frac{x^2}{x^2 - 3}$$
 **D.**  $f(x) = \frac{x^2 - 1}{x^2 + 3}$ 



**36.** Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ 

Find 
$$\frac{dx}{dt}$$
 at  $x = 2$ , by knowing that  $\frac{dy}{dt} = -3$ .

$$A.\frac{1}{4}$$

$$\mathbf{B} \cdot \frac{-1}{4}$$

$$\mathbf{C}$$
.

A. 
$$\frac{1}{4}$$
 B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

**37.** Find the derivative of the function  $f(x) = x e^x$ .

$$\mathbf{A.}\,f'(x)=e$$

**A.** 
$$f'(x) = e^x$$
 **B.**  $f'(x) = e^x(x+1)$ 

$$\mathbf{C}.f'(x) = e^x +$$

$$\mathbf{C} \cdot f'(x) = e^x + 1$$
  $\mathbf{D} \cdot f'(x) = xe^x + 1$ 

**38.** A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain (51200  $m^2$ ). What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**A.** 
$$256 \, m$$
,  $200 \, m$ 

**B.** 
$$400 \, m$$
 .  $128 \, m$ 

**B.** 
$$400 m$$
,  $128 m$  **C.**  $512 m$ ,  $100 m$ 

**39.** The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases (18  $cm^2/min$ ), what is the length of the side of the cube?

C. 
$$2\sqrt{2}$$
 cm

**40.** Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....

**41.** Find the third derivative of the function 
$$f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$$
.

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$

**B.**
$$f'''(x) = \frac{24}{x^4}$$

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

**D.** 
$$f'''(x) = \frac{96}{x^5}$$

**42.**On which interval is the function  $f(x) = x^{\frac{2}{3}} - 4$  decreasing?

$$[A.] - \infty, 0[$$
  $[B.] - \infty, 4[$   $[C.] 0, +\infty[$ 

$$\mathbf{B}$$
.  $]-\infty$ . 4

$$\mathbf{C}$$
.  $]0,+\infty[$ 

**43.** If 
$$f(x) = 2x - 4$$
 and  $g(x) = 1 + 3x$ , find the value of x when  $f(x) = g(x)$ .

**A.** 
$$x = -1$$
 **B.**  $x = 1$  **C.**  $x = 5$  **D.**  $x = -5$ 

$$\mathbf{B.} \;\; \boldsymbol{x} =$$

$$\mathbf{C}. x =$$

**D.** 
$$x = -5$$

**44.** Find the value of **b** when the distance between the point 
$$(1, -3)$$
 and the line  $3x - by = 5$  is  $(zero)$ 

A. 
$$\frac{3}{2}$$
 B.  $\frac{-3}{2}$  C.  $\frac{2}{2}$ 

**45.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2,2]$$

**A.** 
$$[-2,2]$$
 **B.**  $[0,2]$  **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.**  $[-2,0]$ 

**D.** 
$$[-2,0]$$

**46.**If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?

A. 
$$(f g' - f'g)' = f'g'' - f''g'$$
  
B.  $fg'' + f''g = (f g)''$ 

B. 
$$fg'' + f''g = (fg)'$$

$$C. (f'g')' = f''g''$$

D. 
$$(f g)'' = f g'' + 2f'g' + f''g$$
  
  $x + 3$  is tangent to the graph of the

**47.** Find the value of 
$$k$$
 such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the function  $f(x) = \frac{-k}{x}$ . **A.**  $k = 2$  **B.**  $k = -2$  **C.**  $k = 3$  **D.**  $k = -3$ 

$$\frac{1}{x}$$
Solve of the tangent line to the grant and the solve of the tangent line to the grant line

$$\mathbf{B.}\;k=$$

$$\mathbf{C}. k =$$

**48.** Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

**A.** 
$$\frac{1}{\sqrt{3}}$$
 **B.**  $-\frac{1}{\sqrt{3}}$  **C.**  $-\frac{2}{\sqrt{3}}$  **D.**  $\frac{2}{\sqrt{3}}$ 

**49.** If 
$$f(x) = 2 (sinx) (cosx)$$
, find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.**  $-2$ 

**50.** Find the equation of a line passing through the points 
$$(-2, -4)$$
 and  $(-2, 4)$ .  
**A.**  $x = -2$  **B.**  $y = -2$  **C.**  $y = -4$  **D.**  $y = -2$ 

**B.** 
$$v = -2$$

C. 
$$y = -2$$

**C.** 
$$y = -4$$
 **D.**  $y = -2x - 8$ 

Kurdistan Region – Iraq SN: 30000023 In the Name of Allah Subject: Maths Time: 3:30 Hours High Committee for General Examinations General exams for preparatory stage (science) For the Academic year (2020-2021) First attempt

Choose the correct option, two marks for each right answer

1. Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

A.(1,0)

**B.** (2,0)

C.(0,0)

**D.** None

**2.** Use the given graph of the function y = f(x) on the right,

to determine the graph of the function y = -f(x-2)



**3.** Determine the range of the function *f* from the given graph on the right.

A.[-2,2] B. [-2,1] C.[-1,2] D. [0,2]



**4.** Which of the following is true?

**A.** 
$$\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$$
 **B.**  $\lim_{x \to 2} \frac{3}{x - 2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$ 

5. Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$ . A. -3 B. 3 C.  $+\infty$ 

**6.** For what value of  $\mathbf{a}$ , does the function  $f(x) = \begin{cases} \mathbf{a}x^2 + 1 & x \le 2 \\ 2x - \mathbf{a} & x > 2 \end{cases}$ of discontinuity?  $\mathbf{A} \cdot \frac{-3}{5} \qquad \mathbf{B} \cdot \frac{-5}{3} \qquad \mathbf{C} \cdot \frac{5}{3} \qquad \mathbf{D} \cdot \frac{3}{5}$ 

7. If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

A.  $\frac{y+2x}{2y-x}$  B.  $\frac{2x}{2y-x}$  C.  $\frac{y-2x}{2y-x}$ 

**8.** Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.

 $\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$   $\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$   $\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x \neq 1 \end{cases}$   $\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x \neq 1 \end{cases}$ 

**9.** Find the derivative of the function  $f(x) = x e^x$ .

**A.**  $f'(x) = e^x$ 

**B.**  $f'(x) = e^x(x+1)$ 

 $C.f'(x) = e^x + 1$ 

**D.**  $f'(x) = xe^x + 1$ 

**10.** Which of the following functions has a removable discontinuity at x = -3?

**A.**  $f(x) = \frac{x^2 - 9}{(x+3)^2}$  **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

11. Use the given graph on the right to find the result of  $\lim_{x \to 0^+} f(x)$ 

**A**. 0 **B.** -1 **C.** 2

**D.** Does not exist.



12. Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ 

**A.** 
$$y = 1$$
 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$ 

**D.** y = 0

13. Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph.

**A.** 
$$f(x) = \frac{x^2}{x^2+3}$$
 **B.**  $f(x) = \frac{x}{x^2+3}$ 

**C.**
$$f(x) = \frac{x^2}{x^2 - 3}$$
 **D.**  $f(x) = \frac{x^2 - 1}{x^2 + 3}$ 



**14.** Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ .

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

**15.**Which of the following functions is symmetric with respect to the y - axis?

$$\mathbf{A.} \ x^2 y - x^2 + 3y = 0$$

**A.**  $x^2y - x^2 + 3y = 0$  **B.**  $y = \sqrt{x-4}$  **C.** y = |x+2| - 2 **D.**  $x^2y - x = 0$ 

**16.**On which interval is the function  $f(x) = x^{\frac{2}{3}} - 4$  decreasing?

$$\mathbf{A.}] - \infty$$
 ,  $0$ 

 $\mathbf{A} \cdot \mathbf{J} - \infty$ ,  $0 \cdot \mathbf{B} \cdot \mathbf{J} - \infty$ ,  $4 \cdot \mathbf{J} = \mathbf{B} \cdot \mathbf{J} - \infty$ 

 $\mathbb{C}$ .  $]0,+\infty[$ 

17. Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.









**18.**On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

$$\mathbf{A.}] - 1$$
 ,  $1 \mid$ 

What is the highest point the rocket can reach?

**A.**] -1, 1 [ **B.**]  $-\infty$ , -1[ **C.**] -1,  $+\infty$ [ **D.** None

**19.** Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

**A.** 
$$\frac{1}{\sqrt{3}}$$

A.  $\frac{1}{\sqrt{3}}$  B.  $-\frac{1}{\sqrt{3}}$  C.  $-\frac{2}{\sqrt{3}}$  D.  $\frac{2}{\sqrt{3}}$ 

**20.** The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?



**D.** 2

**21.** In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet

**A.** 404 ft

**B.** 580 ft **C.** 606 ft **D.** 768 ft



**A.** 
$$(5, -3)$$
 **B.**  $(-3, 5)$ 

**B.** 
$$(-3,5)$$

$$C.(2,-1)$$

$$\mathbf{D}.(-1,2)$$

#### **23.**Which of the following graphs represents a function?



**24.** The function 
$$f(x) = \frac{-1}{x+2}$$
 is always ..... in its domain .

**A.** Increasing

**B.** Decreasing **C.** Concave

**D.** Convex

**25.**The given graph on the right shows the curve of the function 
$$f$$
 On which interval is  $f'$  increasing?

$$A.] - \infty ,0[$$

**B.** 
$$]0,+\infty[$$

$$[\mathbf{C}, ] - \infty, 0[ \cup ]0, +\infty[$$
  $[\mathbf{D}, ] - \infty, +\infty[$ 





**26.** Find the value of **b** when the distance between the point 
$$(1, -3)$$
 and the line  $3x - by = 5$  is  $(zero)$ 

**A.** 
$$\frac{3}{2}$$
 **B.**  $\frac{-3}{2}$  **C.**  $\frac{2}{3}$  **D.**  $\frac{-2}{3}$ 

**B.** 
$$\frac{-3}{2}$$

C. 
$$\frac{2}{3}$$

**D.** 
$$\frac{-2}{3}$$

27. Find the equation of a line passing through the points (-2, -4) and (-2, 4).

A. 
$$x = -2$$

$$\mathbf{R} \cdot \mathbf{v} = -2$$

**A.** 
$$x = -2$$
 **B.**  $y = -2$  **C.**  $y = -4$ 

**D.** 
$$y = -2x - 8$$

**28.** The result of 
$$\lim_{x \to 3^{-}} \frac{2-x}{x-3}$$
 is: **A.**  $-\infty$  **B.**  $+\infty$  **C.** 0 **D.**  $-1$ 

$$A = -\infty$$
 B.  $+\infty$ 

**29.**If 
$$f(x) = 2 (sinx) (cosx)$$
, find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.**  $-2$ 

**30.** Find the value of **k** such that the line 
$$y = \frac{3}{4}x + 3$$
 is tangent to the graph of the

function 
$$f(x) = \frac{-k}{x}$$
. **A.**  $k = 2$  **B.**  $k = -2$  **C.**  $k = 3$  **D.**  $k = -3$ 

$$\mathbf{A.}\ k=2$$

**B.** 
$$k = -2$$

**C.** 
$$k = 3$$

**D.** 
$$k = -$$

**31.**The result of 
$$\lim_{\Delta x \to 0} \frac{-3(x + \Delta x)^2 + 3x^2}{\Delta x}$$
 is: **A.**6*x* **B.**-6*x* **C.**3*x*<sup>2</sup> **D.** -3*x*<sup>2</sup>

$$\mathbf{B}$$
. $-6\lambda$ 

$$C.3x^2$$

**D.** 
$$-32$$

## **32.** Which of the following functions has no vertical asymptote at x = 2?

$$\mathbf{A.}\,f(x) = \frac{x^2 - 4}{(x - 2)^2}$$

**B.** 
$$f(x) = \frac{x+2}{x^2-1}$$

**A.** 
$$f(x) = \frac{x^2 - 4}{(x - 2)^2}$$
 **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$  **D.**  $f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$ 

**D** 
$$f(x) = \frac{x^2 + x - x}{2x^2 - x}$$

**33.**The result of 
$$\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$$
 is :

**A.** 0 **B.**-4 **C.** 4 **D.** 
$$\frac{4}{5}$$

**34.** A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain 
$$(51200 \ m^2)$$
. What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**A.** 256 m.200 m

- **B.** 400 m, 128 m **C.** 512 m, 100 m
- **D.** 320 m . 160 m

**35.**Which of the following functions has a vertical asymptote at 
$$x = 3$$
 and slant asymptote at  $y = -2x$ ?

$$\mathbf{A.}f(x) = \frac{2x}{3-x}$$

**A.** 
$$f(x) = \frac{2x}{3-x}$$
 **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

C. 
$$f(x) = \frac{-4x^2 - 18}{2x - 6}$$

**D.** 
$$f(x) = \frac{-x^2 + 12x}{x - 3}$$

**36.**IF 
$$f(x) = 3ax^3 + 3$$
 is a function and  $f'(3) = -162$ , find the result of  $f(2)$ .

**A.** 2 **B.** 
$$-51$$
 **C.** 51

**37.** The result of 
$$\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2}$$
 is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$  **D.**  $\frac{1}{9}$ 

$$C_{\cdot} \frac{-1}{2}$$

**D.** 
$$\frac{1}{9}$$

**38.** Find the result of 
$$\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$$
. **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$ 

$$A_{\cdot} \frac{1}{\sqrt{10}}$$

**B.** 
$$2\sqrt{5}$$

C. 
$$\frac{-}{\sqrt{}}$$

$$\mathbf{D} \cdot \frac{1}{2\sqrt{5}}$$

**39.**If 
$$f$$
 and  $g$  are two differentiable function for all  $x$ , and so are their derivatives. Which of the following is true?

A. 
$$(f g' - f'g)' = f'g'' - f''g'$$
 B.  $fg'' + f''g = (f g)''$ 

B. 
$$fg'' + f''g = (fg)''$$

$$C.(f'g')' = f''g''$$

D. 
$$(f g)'' = f g'' + 2f'g' + f''g$$

**40.**If 
$$f(x) = x^3$$
 then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

$$\mathbf{A} \cdot \mathbf{x}^2 - 2\mathbf{x}$$

**B.** 
$$x^2 + 2x$$

**A.** 
$$x^2 - 2x$$
 **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$ 

**D.** 
$$x^2 - 2x + 4$$

**41.** Depending on the intermediate value theorem (IVT). If the function 
$$f$$
 is continuous between  $(x = a \text{ and } x = b)$ , then the equation  $f(x) = 0$  has at least one root between two numbers  $\mathbf{a}$  and  $\mathbf{b}$  when the signs  $f(a)$  and  $f(b)$  are .............

**42.**If 
$$f(x) = 2x - 4$$
 and  $g(x) = 1 + 3x$ , find the value of x when  $f(x) = g(x)$ .

**A.** 
$$x = -1$$
 **B.**  $x = 1$  **C.**  $x = 5$ 

$$\lambda \cdot x = 5$$

$$C - \frac{1}{2}$$

**43.** Find the result of 
$$\lim_{x\to 0} \frac{\frac{5}{2x+10} - \frac{1}{2}}{x}$$
. **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$  **D.** 0 **44.** Find the equation of the line that passes through the point  $(-4, 1)$  and perpendicular to the  $y$ -axis. **A.**  $x + 4 = 0$  **B.**  $y - 4x = 0$  **C.**  $y - 1 = 0$  **D.**  $y + 3 = 0$ 

**45.**Which of the following is false?

**A**. The graph of a cubic function has exactly one point of inflection.

**B**.If 
$$f'(x) = g'(x)$$
, then  $f(x) = g(x)$ 

**C**. If 
$$g(x) = -5f(x)$$
, then  $g'(x) = -5f'(x)$ 

**D**. If 
$$y = \frac{2x}{\pi}$$
, then  $\frac{dy}{dx} = \frac{2}{\pi}$ 

**46.** Find the result of 
$$\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$$
 (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$ 

**47.**The volume of a cube increases an average of 
$$(36 \text{ cm}^3/\text{min})$$
, while its surface area increases  $(18 \text{ cm}^2/\text{min})$ , what is the length of the side of the cube?

**A.** 2 cm **B.** 4 cm **C.** 
$$2\sqrt{2}$$
 cm

**48.** The result of 
$$\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$$
 is: **A.** 0 **B.** -1 **C.** -2

**49.** Assume that 
$$x$$
 and  $y$  are two differentiable of a variable  $t$ . If  $y = x^3 + 1$ .

Find 
$$\frac{dx}{dt}$$
 at  $x = 2$ , by knowing that  $\frac{dy}{dt} = -3$ .

$$A.\frac{1}{4}$$

**B.** 
$$\frac{-1}{4}$$

A. 
$$\frac{1}{4}$$
 B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

**50.** Find the domain of the function 
$$g \circ f$$
 when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** 
$$[-2, 2]$$

**A.** 
$$[-2,2]$$
 **B.**  $[0,2]$  **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.**  $[-2,0]$ 

**D.** 
$$[-2,0]$$

Kurdistan Region – Iraq SN: 30000024 In the Name of Allah Subject: Maths Time: 3:30 Hours **High Committee for General Examinations** General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Choose the correct option, two marks for each right answer

1. The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain.

**A.** Increasing

**B.** Decreasing **C.** Concave

2. Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

**A.**  $f(x) = \frac{2x}{3-x}$  **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

3. Which of the following functions has no vertical asymptote at x = 2?

**A.**  $f(x) = \frac{x^2 - 4}{(x - 2)^2}$  **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$ 

**D**  $f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$ 

**4.** If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

**A.**  $x^2 - 2x$  **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$ 

**D.**  $x^2 - 2x + 4$ 

5. Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph.

**A.**  $f(x) = \frac{x^2}{x^2 + 3}$  **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

 $\mathbf{C}.f(x) = \frac{x^2}{x^2 - 3}$   $\mathbf{D}.f(x) = \frac{x^2 - 1}{x^2 + 3}$ 



**6.** Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

A.(1,0)

**B.** (2,0) **C.** (0,0)

**D.** None

7. Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$ . A. -3 B. 3 C.  $+\infty$ 

**D.** 0

**8.** Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ .

**A.**  $f'''(x) = \frac{-24}{x^4}$  **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

**9.** Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....

**A.** Positive

**B.** Negative

**C.** Opposite

**D.** None

10. The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases  $(18 cm^2/min)$ , what is the length of the side of the cube?

**A.** 2 cm

**B.** 4 *cm* 

C.  $2\sqrt{2}$  cm

**D.** 8 cm

**11.** Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ .

Find  $\frac{dx}{dt}$  at x=2, by knowing that  $\frac{dy}{dt}=-3$ .

A.  $\frac{1}{4}$  B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$ 

12. If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

A.  $\frac{y+2x}{2y-x}$  B.  $\frac{2x}{2y-x}$  C.  $\frac{y-2x}{2y-x}$ 

**13.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ 

**A.** y = 1 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$ 

**D.** y = 0

**14.**Use the given graph of the function y = f(x) on the right,

to determine the graph of the function y = -f(x-2)



**15.** Find the result of  $\lim_{x\to 0} \frac{\frac{5}{2x+10} - \frac{1}{2}}{x}$ . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$ 

**16.** Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.



**17.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 - x^2$  and  $g(x) = -\sqrt{x}$ .

**A.** [-2,2] **B.** [0,2] **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.** [-2,0]

**18.**IF  $f(x) = 3ax^3 + 3$  is a function and f'(3) = -162, find the result of f(2).

**A.** 2

**B.** -51

**C.** 51

**19.**The line y = -4x + 7 passes through which of the following points?

**A.** (5,-3) **B.** (-3,5) **C.** (2,-1)

 $\mathbf{D} \cdot (-1,2)$ 

**20.**The result of  $\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$  is: **A.** 0 **B.**-1 **C.**-2

**D.** Does not exist.

**21.**The result of  $\lim_{\Delta x \to 0} \frac{-3(x+\Delta x)^2+3x^2}{\Delta x}$  is: **A.**6x **B.**-6x **C.**3x<sup>2</sup> **D.** -3x<sup>2</sup>

**22.**Find the derivative of the function  $f(x) = x e^x$ .

$$\mathbf{A.}\,f'(x)=e^x$$

**B.**  $f'(x) = e^x(x+1)$  **C.**  $f'(x) = e^x + 1$ 

**D.**  $f'(x) = xe^x + 1$ 

**23.**Use the given graph on the right

to find the result of  $\lim_{x\to 0^+} f(x)$  **A.** 0 **B.** -1 **C.** 2 **D.** Does not exist.

**A**. 0

**A.** 0



**24.**Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ -1 & x = 1 \end{cases}$$

**25.**The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is :





27. The result of  $\lim_{x\to 3^-} \frac{2-x}{x-3}$  is: A.  $-\infty$  B.  $+\infty$  C. 0

 $A.\frac{3}{5}$   $B.\frac{2}{5}$  C.1 D. 2

**D.** -1

**28.**On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

$$A.] - 1.1$$

**A.**] -1, 1 [ **B.**]  $-\infty$ , -1[ **C.**] -1,  $+\infty$ [ **D.** None

**29.** Determine the range of the function ffrom the given graph on the right.



30. For what value of  $\mathbf{a}$ , does the function  $f(x) = \begin{cases} \mathbf{a}x^2 + 1 & x \le 2 \\ 2x - \mathbf{a} & x > 2 \end{cases}$  has no of discontinuity?  $\mathbf{A} \cdot \frac{-3}{5} \quad \mathbf{B} \cdot \frac{-5}{3} \quad \mathbf{C} \cdot \frac{5}{3} \quad \mathbf{D} \cdot \frac{3}{5}$ 

31. In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet What is the highest point the rocket can reach?

**A.** 404 ft

**B.** 580 ft **C.** 606 ft **D.** 768 ft

**32.** The given graph on the right shows the curve of the function f On which interval is f' increasing?

 $A. ] - \infty , 0[$ 

**B.**  $]0,+\infty[$ 

C. ]  $-\infty$ ,0[ U ]0,  $+\infty$ [

 $\mathbf{D}$ .  $]-\infty$ ,  $+\infty$ 



33. Which of the following functions has a removable discontinuity at x = -3?

**A.**  $f(x) = \frac{x^2 - 9}{(x + 3)^2}$  **B.**  $f(x) = \frac{x^3 + 27}{2x + 6}$  **C.**  $f(x) = \frac{x^2 + 9}{x + 3}$  **D.**  $f(x) = \frac{|x + 3|}{2x + 6}$ 

**34.** Find the result of  $\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$ 

35. A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain (51200  $m^2$ ). What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**A.**  $256 \, m$ ,  $200 \, m$ 

**B.** 400 m, 128 m **C.** 512 m, 100 m

**D.** 320 m, 160 m

**36.** Which of the following functions is symmetric with respect to the y - axis?

**A.**  $x^2y - x^2 + 3y = 0$  **B.**  $y = \sqrt{x-4}$  **C.** y = |x+2| - 2 **D.**  $x^2y - x = 0$ 

**37.**Which of the following is true?

**A.**  $\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$  **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2 - 1}{x-1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$ 

**38.**On which interval is the function  $f(x) = x^{\frac{2}{3}} - 4$  decreasing?

**A.** ]  $-\infty$ , 0 [ **B.** ]  $-\infty$ , 4 [ **C.** ] 0,  $+\infty$ 

**D.** None

**39.** Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)

**A.**  $\frac{3}{2}$  **B.**  $\frac{-3}{2}$  **C.**  $\frac{2}{3}$  **D.**  $\frac{-2}{3}$ 

**40.** Find the equation of the line that passes through the point (-4,1) and perpendicular to

the y - axis . A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0

**D.** v + 3 = 0

**41.** Find the result of  $\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$ . **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$ 

**42.** Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** x = -2

**B.** y = -2 **C.** y = -4 **D.** y = -2x - 8

**43.** Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

A. 
$$\frac{1}{\sqrt{3}}$$
 B.  $-\frac{1}{\sqrt{3}}$  C.  $-\frac{2}{\sqrt{3}}$  D.  $\frac{2}{\sqrt{3}}$ 

**44.**If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.** -2

**45.** Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function  $f(x) = \frac{-k}{x}$ . **A.** k = 2 **B.** k = -2 **C.** k = 3 **D.** k = -3

**46.**If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?

A. (f g' - f' g)' = f' g'' - f'' g'B. f g'' + f'' g = (f g)''C.(f'a')' = f''a''

D. 
$$(f g)'' = f g'' + 2f'g' + f''g$$

**47.**Which of the following graphs represents a function?



**48.** The result of  $\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2}$  is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$ 

**49.**If f(x) = 2x - 4 and g(x) = 1 + 3x, find the value of x when f(x) = g(x).

**A.** x = -1 **B.** x = 1

**C.** x = 5

**D.** x = -5

**50.**Which of the following is false?

**A**. The graph of a cubic function has exactly one point of inflection.

**B**.If f'(x) = g'(x), then f(x) = g(x)

**C**. If g(x) = -5f(x), then g'(x) = -5f'(x)

**D**. If  $y = \frac{2x}{x}$ , then  $\frac{dy}{dx} = \frac{2}{x}$ 

Kurdistan Region – Iraq SN: 30000025 In the Name of Allah Subject: Maths Time: 3:30 Hours High Committee for General Examinations General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Choose the correct option, two marks for each right answer

1. The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?



 $\mathbf{A} \cdot \frac{3}{5}$   $\mathbf{B} \cdot \frac{2}{5}$ 

**C.**1 **D.** 2

**2.** Use the given graph of the function y = f(x) on the right, to determine the graph of the function y = -f(x-2)



3. Redefine the function  $f(x) = \frac{\sqrt{2-x} - \sqrt{x}}{x-1}$  to be continuous at x = 1.



**4.** Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ 

**A.** 
$$f'''(x) = \frac{-24}{x^4}$$
 **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$  **5.** The result of  $\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$  is: **A.** 0 **B.** -1 **C.** -2 **D.** Does not exist.

**6.** The given graph on the right shows the curve of the function f On which interval is f' increasing?



**8.** On which interval is the function  $f(x) = x^{\frac{2}{3}} - 4$  decreasing?



**9.** Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are ..... **D.** None

**C.** Opposite **A.** Positive **B.** Negative **10.** The line y = -4x + 7 passes through which of the following points?

**A.** (5, -3) **B.** (-3, 5) **C.** (2, -1)

 $\mathbf{D} \cdot (-1,2)$ 

11. Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.



12. Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph

**A.** 
$$f(x) = \frac{x^2}{x^2 + 3}$$
 **B.**  $f(x) = \frac{x}{x^2 + 3}$  **C.**  $f(x) = \frac{x^2}{x^2 - 3}$  **D.**  $f(x) = \frac{x^2 - 1}{x^2 + 3}$ 



13. The result of  $\lim_{\Delta x \to 0} \frac{-3(x+\Delta x)^2+3x^2}{\Delta x}$  is:

 $\mathbf{A.6}x$  $\mathbf{B}$ .-6x

**C.** $3x^2$  **D.**  $-3x^2$ 

**14.**If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x - 2}$ ?

**A.** 
$$x^2 - 2x$$
 **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$ 

**B.** 
$$x^2 + 2x$$

C. 
$$x^2 + 2x + 4$$

$$2x^2 - 2x + 4$$

**15.** Which of the following functions has no vertical asymptote at x = 2?

**A.** 
$$f(x) = \frac{x^2 - 4}{(x - 2)^2}$$
 **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$  **D.**  $f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$ 

**16.** Which of the following functions has a removable discontinuity at x = -3?

**A.** 
$$f(x) = \frac{x^2 - 9}{(x+3)^2}$$
 **B.**  $f(x) = \frac{x^3 + 27}{2x+6}$  **C.**  $f(x) = \frac{x^2 + 9}{x+3}$  **D.**  $f(x) = \frac{|x+3|}{2x+6}$ 

17. Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?

**A.** 
$$f(x) = \frac{2x}{3-x}$$
 **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

**18.**Which of the following graphs represents a function?



**19.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ .

**A.** 
$$y = 1$$
 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$  **D.**  $y = 0$ 

**20.** For what value of 
$$\mathbf{a}$$
, does the function  $f(x) = \begin{cases} \mathbf{a}x^2 + 1 & x \le 2 \\ 2x - \mathbf{a} & x > 2 \end{cases}$  has no points of discontinuity? 
$$\mathbf{A} \cdot \frac{-3}{5} \quad \mathbf{B} \cdot \frac{-5}{3} \quad \mathbf{C} \cdot \frac{5}{3} \quad \mathbf{D} \cdot \frac{3}{5}$$

**21.** The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain .

**A.** Increasing **B.** Decreasing **C.** Concave **D.** Convex

| 22. In a fireworks festival, a rocket is launched upward. The function $S(t) = -16t^2 + 192t + 4$ is |
|------------------------------------------------------------------------------------------------------|
| the position function of the rocket, $\mathbf{t}$ is measured in seconds and $\mathbf{S}$ in feet    |
| What is the highest point the rocket can reach?                                                      |

**B.** 580 ft **C.** 606 ft **D.** 768 ft

23. A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain (51200  $m^2$ ). What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**A.**  $256 \, m$ ,  $200 \, m$ 

**B.** 400 m, 128 m **C.** 512 m, 100 m

**D.** 320 m, 160 m

**24.**IF  $f(x) = 3ax^3 + 3$  is a function and f'(3) = -162, find the result of f(2).

- **A.** 2 **B.** -51
- **25.** Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function  $f(x) = \frac{-k}{x}$ . **A.** k = 2 **B.** k = -2 **C.** k = 3

- **D.** k = -3
- **26.** Find the value of **b** when the distance between the point (1, -3) and the line 3x by = 5 is (zero)

- A.  $\frac{3}{2}$  B.  $\frac{-3}{2}$  C.  $\frac{2}{3}$

**C.** 51

27. If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

**A.**  $\frac{y+2x}{2y-x}$  **B.**  $\frac{2x}{2y-x}$  **C.**  $\frac{y-2x}{2v-x}$  **D.**  $\frac{-2x}{2v-x}$ 

- **28.**Which of the following is false?
  - **A**. The graph of a cubic function has exactly one point of inflection.
  - **B**.If f'(x) = g'(x), then f(x) = g(x)
  - C. If g(x) = -5f(x), then g'(x) = -5f'(x)
  - **D**. If  $y = \frac{2x}{\pi}$ , then  $\frac{dy}{dx} = \frac{2}{\pi}$
- **29.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 x^2$  and  $g(x) = -\sqrt{x}$ .
  - **A.** [-2,2] **B.** [0,2] **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.** [-2,0]

- **30.** Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$ . **A.** -3 **B.** 3 **C.** + $\infty$  **D.** 0
- 31. If f(x) = 2x 4 and g(x) = 1 + 3x, find the value of x when f(x) = g(x).

**A.** x = -1 **B.** x = 1 **C.** x = 5 **D.** x = -5

- 32. The result of  $\lim_{x \to 3^-} \frac{2-x}{x-3}$  is: A.  $-\infty$  B.  $+\infty$  C. 0
- 33.If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : A.  $2\pi$  B.  $-2\pi$  C. 2 D. -2

- **34.** Find the derivative of the function  $f(x) = x e^x$ .
- **A.**  $f'(x) = e^x$  **B.**  $f'(x) = e^x(x+1)$
- $C_{\cdot}f'(x) = e^x + 1$
- **D.**  $f'(x) = xe^x + 1$
- **35.** Find the point of inflection for the function f(x) = 3x(x-1)(x-2).
  - A.(1,0)
- B.(2,0)
- C.(0,0)
- **D.** None

**36.** Determine the range of the function f



**37.** Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

**A.** 
$$\frac{1}{\sqrt{3}}$$
 **B.**  $-\frac{1}{\sqrt{3}}$  **C.**  $-\frac{2}{\sqrt{3}}$  **D.**  $\frac{2}{\sqrt{3}}$ 

**38.**If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?

A. (f g' - f'g)' = f'g'' - f''g' B. fg'' + f''g = (f g)''

C.(f'a')' = f''a''

- D. (f g)'' = f g'' + 2f'g' + f''g
- **39.** The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases (18  $cm^2/min$ ), what is the length of the side of the cube?

**A.** 2 cm

- **B.** 4 *cm*
- C.  $2\sqrt{2}$  cm
- **D.** 8 *cm*
- **40.** Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** x = -2

- **B.** y = -2 **C.** y = -4 **D.** y = -2x 8

- **41.**On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

**A.**] -1, 1 [ **B.**]  $-\infty$ , -1[ **C.**] -1,  $+\infty$ [ **D.** None

- **42.** Find the result of  $\lim_{x\to 0} \frac{\frac{5}{2x+10} \frac{1}{2}}{x}$ . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$

- **43.** Which of the following functions is symmetric with respect to the y axis?

**A.**  $x^2y - x^2 + 3y = 0$  **B.**  $y = \sqrt{x-4}$  **C.** y = |x+2| - 2 **D.**  $x^2y - x = 0$ **44.**Use the given graph on the right

- **A**. 0



- **45.**The result of  $\lim_{x \to -2} \frac{\frac{1}{1-x} \frac{1}{3}}{x+2}$  is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$  **D.**  $\frac{1}{9}$  **46.**The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is: **A.** 0 **B.** -4 **C.** 4

- **47.**Which of the following is true?
  - **A.**  $\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$  **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2-1}{x-1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$

- **48.** Find the equation of the line that passes through the point (-4,1) and perpendicular to the y - axis . A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0 D. y + 3 = 0
- **49.** Find the result of  $\lim_{x\to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$
- **50.** Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ . Find  $\frac{dx}{dt}$  at x = 2, by knowing that  $\frac{dy}{dt} = -3$ .

 $\mathbf{A} \cdot \frac{1}{4} \qquad \mathbf{B} \cdot \frac{-1}{4} \qquad \mathbf{C} \cdot \frac{1}{2} \qquad \mathbf{D} \cdot \frac{-1}{2}$ 

Kurdistan Region – Iraq SN: 30000026 In the Name of Allah

**High Committee for General Examinations** 

Subject: Maths Time: 3:30 Hours

General exams for preparatory stage (science) For the Academic year (2020-2021) First attemp

Choose the correct option, two marks for each right answer

**1.** The result of  $\lim_{x\to 0} \frac{-x}{\sqrt{x+1}-1}$  is: **A.** 0 **B.**-1

**D.** Does not exist.

**2.** The result of  $\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^2 + 3x + 2}$  is : **A.** 0

3. The volume of a cube increases an average of  $(36 \text{ cm}^3/\text{min})$ , while its surface area increases  $(18 cm^2/min)$ , what is the length of the side of the cube?

**A.** 2 *cm* 

**B.** 4 cm **C.**  $2\sqrt{2}$  cm

**D.** 8 *cm* 

**4.** The result of  $\lim_{\Delta x \to 0} \frac{-3(x+\Delta x)^2+3x^2}{\Delta x}$  is:

**A.**6*x* **B.**-6*x* **C.**3 $x^2$  **D.** -3 $x^2$ 

5. The given graph on the right shows the curve of the function fOn which interval is f' increasing?

 $A.] - \infty ,0[$ 

**B.**  $]0,+\infty[$ 

C.  $]-\infty,0[\cup]0,+\infty[$  D.  $]-\infty,+\infty[$ 



**6.** If  $x^2 - xy + y^2 = 1$  then which of the following is equal to  $\frac{dy}{dx}$ ?

A.  $\frac{y+2x}{2y-x}$  B.  $\frac{2x}{2y-x}$  C.  $\frac{y-2x}{2y-x}$ 

7. Use the intercepts, symmetry, asymptotes, first and second derivative test to determine the function of the given graph.

**A.**  $f(x) = \frac{x^2}{x^2 + 3}$  **B.**  $f(x) = \frac{x}{x^2 + 3}$ 

 $\mathbf{C} \cdot f(x) = \frac{x^2}{x^2 - 2}$   $\mathbf{D} \cdot f(x) = \frac{x^2 - 1}{x^2 + 2}$ 



**8.** The figure on the right shows a rectangle and an isosceles triangle inscribed in a circle of diameter (5). What is the value of (x) that will make the areas of the rectangle and the triangle equal?

A. $\frac{3}{5}$  B. $\frac{2}{5}$  C.1 D. 2



**9.** Determine the graph of the function f(x) = 2 - |x + 1| by using point plotting.







**10.** The function  $f(x) = \frac{-1}{x+2}$  is always ..... in its domain .

**A.** Increasing

**B.** Decreasing **C.** Concave

**D.** Convex

**11.** Find the slope of the tangent line to the graph  $y^2 = \frac{x+1}{x-1}$  at the point  $(2, \sqrt{3})$ .

A.  $\frac{1}{\sqrt{2}}$  B.  $-\frac{1}{\sqrt{2}}$  C.  $-\frac{2}{\sqrt{2}}$  D.  $\frac{2}{\sqrt{2}}$ 

**12.**Which of the following functions is symmetric with respect to the y - axis?

**A.**  $x^2y - x^2 + 3y = 0$  **B.**  $y = \sqrt{x-4}$  **C.** y = |x+2| - 2 **D.**  $x^2y - x = 0$ 

**13.** Find the value of **b** when the distance between the point (1, -3) and the line 3x - by = 5 is (zero)

A.  $\frac{3}{2}$  B.  $\frac{-3}{2}$  C.  $\frac{2}{3}$ 

**14.** Find the value of **k** such that the line  $y = \frac{3}{4}x + 3$  is tangent to the graph of the

function  $f(x) = \frac{-k}{r}$ . **A.** k = 2 **B.** k = -2 **C.** k = 3

**15.**If f(x) = 2 (sinx) (cosx), find the result of  $f'(\pi)$ : **A.**  $2\pi$  **B.**  $-2\pi$  **C.** 2 **D.** -2

**16.**IF  $f(x) = 3ax^3 + 3$  is a function and f'(3) = -162, find the result of f(2). **B.** -51

**C.** 51

17. Find the equation of the line that passes through the point (-4,1) and perpendicular to the y - axis . A. x + 4 = 0 B. y - 4x = 0 C. y - 1 = 0**D.** y + 3 = 0

**18.** For what value of a, does the function  $f(x) = \begin{cases} ax^2 + 1 & x \le 2 \\ 2x - a & x > 2 \end{cases}$  has no points of discontinuity?  $\mathbf{A} \cdot \frac{-3}{5} \qquad \mathbf{B} \cdot \frac{-5}{3} \qquad \mathbf{C} \cdot \frac{5}{3} \qquad \mathbf{D} \cdot \frac{3}{5}$ 

**19.** Find the point of inflection for the function f(x) = 3x(x-1)(x-2).

A.(1.0)

**B.** (2,0)

 $\mathbf{C}.(0.0)$ 

**D.** None

20.A farmer plans to fence a rectangular pasture adjacent to a river. The area of the pasture must contain  $(51200 \, m^2)$ . What dimensions would be required for the least amount of fencing if fencing is not needed along the river.

**A.** 256 m, 200 m

**B.** 400 m, 128 m **C.** 512 m, 100 m

**21.** Find the result of  $\lim_{x \to +\infty} \frac{\ln x^4}{x^3}$  (Use L'Hopital's rule): **A.** 0 **B.** 1 **C.**  $\frac{1}{4}$  **D.**  $+\infty$ 

22. If f(x) = 2x - 4 and g(x) = 1 + 3x, find the value of x when f(x) = g(x).

**A.** x = -1 **B.** x = 1

**C.** x = 5 **D.** x = -5

**A.**  $\lim_{x \to +\infty} (2 + \frac{\sin x}{x}) = 2$  **B.**  $\lim_{x \to 2} \frac{3}{x-2} = 3$  **C.**  $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 0$  **D.**  $\lim_{x \to 0} \frac{\sin x}{x} = 0$ **24.** Find the derivative of the function  $f(x) = x e^x$ .

**23.**Which of the following is true?

**A.**  $f'(x) = e^x$  **B.**  $f'(x) = e^x(x+1)$  **C.**  $f'(x) = e^x + 1$  **D.**  $f'(x) = xe^x + 1$ 

**25.** Determine the equation of the horizontal asymptote of the function  $f(x) = \frac{2x - 3x^2 + 1}{2x^2 + 5x}$ .

**A.** y = 1 **B.**  $y = \frac{-3}{2}$  **C.**  $y = \frac{-3}{5}$ 

**D.** y = 0

**26.** If f and g are two differentiable function for all x, and so are their derivatives. Which of the following is true?

A. (f g' - f'g)' = f'g'' - f''g' B. fg'' + f''g = (f g)''C.(f'g')' = f''g''

D. (f g)'' = f g'' + 2f'g' + f''g

**27.** Find the third derivative of the function  $f(x) = \frac{x^3 - 3x^2 + 4}{x^2}$ 

**A.**  $f'''(x) = \frac{-24}{x^4}$  **B.**  $f'''(x) = \frac{24}{x^4}$  **C.**  $f'''(x) = \frac{-96}{x^5}$  **D.**  $f'''(x) = \frac{96}{x^5}$ 

**28.** The result of  $\lim_{x \to -2} \frac{\frac{1}{1-x} - \frac{1}{3}}{x+2}$  is: **A.** 9 **B.** -9 **C.**  $\frac{-1}{9}$  **D.**  $\frac{1}{9}$ 

**29.**Use the given graph on the right

to find the result of  $\lim_{x\to 0^+} f(x)$ 

**A**. 0

- **B.** -1
- **C.** 2
- **D.** Does not exist.



**30.** Which of the following functions has a vertical asymptote at x = 3 and slant asymptote at y = -2x?



**B.** 
$$f(x) = \frac{-2x^2 + 6x + 6x + 6x}{x - 3}$$

C. 
$$f(x) = \frac{-4x^2 - 18}{2x - 6}$$

**A.** 
$$f(x) = \frac{2x}{3-x}$$
 **B.**  $f(x) = \frac{-2x^2+6x+1}{x-3}$  **C.**  $f(x) = \frac{-4x^2-18x}{2x-6}$  **D.**  $f(x) = \frac{-x^2+12x}{x-3}$ 

- **31.**Which of the following is false?
  - **A**. The graph of a cubic function has exactly one point of inflection.
  - **B**.If f'(x) = g'(x), then f(x) = g(x)
  - **C**. If g(x) = -5f(x), then g'(x) = -5f'(x)
  - **D**. If  $y = \frac{2x}{\pi}$ , then  $\frac{dy}{dx} = \frac{2}{\pi}$
- **32.**Redefine the function  $f(x) = \frac{\sqrt{2-x} \sqrt{x}}{x-1}$  to be continuous at x = 1.

$$\mathbf{A.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

$$\mathbf{B.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 0 & x = 1 \end{cases}$$

**B.** 
$$g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ \sqrt{2} & x = 1 \end{cases}$$

$$\mathbf{C.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq \\ 0 & x = \end{cases}$$

$$\mathbf{D.} \ g(x) = \begin{cases} \frac{\sqrt{2-x} - \sqrt{x}}{x-1} & x \neq 1 \\ 1 & x = 1 \end{cases}$$

- **33.**Which of the following functions has a removable discontinuity at x = -3?
- **A.**  $f(x) = \frac{x^2 9}{(x + 3)^2}$  **B.**  $f(x) = \frac{x^3 + 27}{2x + 6}$  **C.**  $f(x) = \frac{x^2 + 9}{x + 3}$  **D.**  $f(x) = \frac{|x + 3|}{2x + 6}$
- **34.** Find the equation of a line passing through the points (-2, -4) and (-2, 4).

**A.** x = -2

- **B.** y = -2
- **C.** y = -4
- **D.** y = -2x 8

**35.**Which of the following graphs represents a function?









**36.** Assume that x and y are two differentiable of a variable t. If  $y = x^3 + 1$ .

Find  $\frac{dx}{dt}$  at x=2, by knowing that  $\frac{dy}{dt}=-3$ .

- A.  $\frac{1}{4}$  B.  $\frac{-1}{4}$  C.  $\frac{1}{2}$  D.  $\frac{-1}{2}$
- 37. In a fireworks festival, a rocket is launched upward. The function  $S(t) = -16t^2 + 192t + 4$  is the position function of the rocket, t is measured in seconds and S in feet What is the highest point the rocket can reach?
  - **A.** 404 ft

- **B.** 580 ft **C.** 606 ft **D.** 768 ft

**38.** Use the given graph of the function y = f(x) on the right, to determine the graph of the function y = -f(x-2)



- **39.** The result of  $\lim_{x \to 3^-} \frac{2-x}{x-3}$  is: A.  $-\infty$  B.  $+\infty$  C. 0 **40.** Find the result of  $\lim_{x \to -\infty} \frac{-3x}{\sqrt{x^2+1}}$ . A. -3 B. 3

- **41.**The line y = -4x + 7 passes through which of the following points?

**A.** 
$$(5,-3)$$
 **B.**  $(-3,5)$  **C.**  $(2,-1)$ 

- $\mathbf{D} \cdot (-1,2)$

**42.** Determine the range of the function *f* from the given graph on the right.

$$A.[-2,2]$$



- **43.** Find the result of  $\lim_{x \to 0} \frac{\frac{5}{2x+10} \frac{1}{2}}{x}$ . **A.**  $\frac{5}{2}$  **B.**  $-\frac{1}{20}$  **C.**  $-\frac{1}{10}$
- **44.** Find the result of  $\lim_{x\to 0} \frac{\sqrt{x+5}-\sqrt{5}}{x}$ . **A.**  $\frac{1}{\sqrt{10}}$  **B.**  $2\sqrt{5}$  **C.**  $\frac{-1}{\sqrt{5}}$  **D.**  $\frac{1}{2\sqrt{5}}$

- **45.** Which of the following functions has no vertical asymptote at x = 2?

**A.** 
$$f(x) = \frac{x^2 - 4}{(x - 2)^2}$$
 **B.**  $f(x) = \frac{x + 2}{x^2 - 4}$  **C.**  $f(x) = \frac{x^2 + 4}{x^2 - 3x + 2}$  **D.**  $f(x) = \frac{x^2 + x - 6}{2x^2 - 8}$ 

**B.** 
$$f(x) = \frac{x+2}{x^2-4}$$

C. 
$$f(x) = \frac{x^2+4}{x^2-3x+4}$$

- **46.** Find the domain of the function  $g \circ f$  when  $f(x) = 4 x^2$  and  $g(x) = -\sqrt{x}$ .

$$A.[-2.2]$$

**A.** 
$$[-2,2]$$
 **B.**  $[0,2]$  **C.**  $]-\infty,-2] \cup [2,+\infty[$  **D.**  $[-2,0]$ 

**D.** 
$$[-2,0]$$

**47.**On which interval is the function  $f(x) = x^{\frac{2}{3}} - 4$  decreasing?

**A.** ] 
$$-\infty$$
, 0 [ **B.** ]  $-\infty$ , 4 [ **C.** ] 0,  $+\infty$ [

$$\mathbf{B.}] - \infty$$
, 4 [

**48.**If  $f(x) = x^3$  then which of the following is equal to  $\frac{f(x) - f(2)}{x^3}$ ?

**A.** 
$$x^2 - 2x$$

**A.** 
$$x^2 - 2x$$
 **B.**  $x^2 + 2x$  **C.**  $x^2 + 2x + 4$ 

**D.** 
$$x^2 - 2x + 4$$

**49.** Depending on the intermediate value theorem (IVT). If the function f is continuous between (x = a and x = b), then the equation f(x) = 0 has at least one root between two numbers **a** and **b** when the signs f(a) and f(b) are .....

**50.**On which interval is the function  $f(x) = \frac{x-1}{x+1}$  convex ?

$$\mathbf{A.}] - 1,1$$

**A.**] 
$$-1$$
, 1 [ **B.**]  $-\infty$ ,  $-1$ [ **C.**]  $-1$ ,  $+\infty$ [ **D.** None

$$[C.] - 1, +0$$

$$\mathbf{D}$$
. None