MINISTRY OF ED HIGH COMMITTE General Examina	GION GOVERN UCATION E OF THE GENE Itions for Prepara	RAL EXAMINATI	ON Attempt		Time:3:3	ics	gerprint
Choose the right	answers for the f	following question	ons: (two marks	for each qu	uestion)		
	a standard and						
1. A car's tire rotate speed is 28 ra A) 1 rad/s ²	es at an initial angu ad/s. What is the tire B) 3 rad/s ²	lar speed of 21.5 r e's average angula C) 1.9 rad/s ²	rad/s. The driver ac ar acceleration duri D) 3.5 rad/s ²	ccelerates, a ing the 6.5 s	nd after 6.5 time interv	5 s the tire's a al?	angular
 A car's tire rotate speed is 28 ra A) 1 rad/s² Find the magnite 	es at an initial angu ad/s. What is the tin B) 3 rad/s ² ude of the gravitatio	lar speed of 21.5 r e's average angula C) 1.9 rad/s ² onal force a 71.2 k	rad/s. The driver ac ar acceleration duri D) 3.5 rad/s ² ag person would ex	ccelerates, a ing the 6.5 s perience wh	nd after 6.8 time interv ile standing	5 s the tire's a al? 9	angular
A car's tire rotate speed is 28 ra A) 1 rad/s ² Find the magnite on the surfac	es at an initial angu ad/s. What is the tin B) 3 rad/s ² ude of the gravitations e of planet Earth	lar speed of 21.5 r e's average angula C) 1.9 rad/s ² onal force a 71.2 k $G = 6.673 \times 10^{-10}$	rad/s. The driver action duri ar acceleration duri D) 3.5 rad/s ² ag person would ex $-11 \frac{N.m^2}{k\sigma^2}$	ccelerates, a ing the 6.5 s perience whi m _{Earth}	nd after 6.8 time interv ile standing	5 s the tire's a al? r _{Earth}	angular

- **4.** The angle between direction of centripetal force (F_c) and direction of tangential speed $(\vec{v_t})$ is: **A)** 180° **B)** 0° **C)** 30° **D)** 90°
- 5. (Car moves in a circular at a constant speed) which of the following is true of motion of the car?
 - A) It has tangential acceleration but no centripetal acceleration
 - B) It has centripetal acceleration but no tangential acceleration.
 - C) It has both centripetal acceleration and tangential acceleration.
 - D) It doesn't have tangential acceleration and centripetal acceleration
- **6.** (A car moving around a flat circular track). Identify the force that maintains the circular motion?
 - A) The friction force between tires and the road B) Total weight of car D) None of them
 - **C)** The normal force of the road on the car

7. The three forces acting on the rod have equal magnitudes $(F_1 = F_2 = F_3 = 10 \text{ N})$ as shown in figure which of the forces produce greatest torgue on the rod about the axis at the

left end of the rod?[If L = 1 m]

- A) $\overrightarrow{F_2}$ **B**) $\overrightarrow{F_1}$
- **C**) $\overrightarrow{F_3}$ **D)** Each force will produce the same torque
- rotation
- 8. (Two sold spheres of different diameters and different masses) have the same moment of inertia, If the diameter of second sphere is half of diameter of first sphere and the mass of second sphere D) three times
 - isthe mass of first sphere A) half B) twice C) four times
- 9. A solid ball starts from rest at the top of an incline 3.5 m in height. Find the translational speed of the ball after it has rolled to the bottom of the incline.
 - **D)** 7 m/s **A)** 5 m/s **B)** 3.5 m/s **C)** 1.57 m/s
- 10. A man of weight 720 N stands on a light board of length 2 m that is fixed on two supports at its extremities. If the distance between the point where the man stands and the first support is 0.5 m, what is the force exerted by the second support on the board? **A)** 180 N **B)** 280 N **C)** 400 N **D)** 750 N
- **11.** Ice skaters use the principle of conservation of angular momentum to produce high-speed spins, if the skaters' moment of inertia decreased to half, by what factor does its rotational kinetic energy change?
- **A**) $\frac{1}{2}$ **D**) $\frac{1}{4}$ **C)** 4 **B)**2 **12.** A force of 12 N is applied tangentially to a disk of radius 0.2 m. if the angular acceleration of disc is 4 rad/s² what is the moment of inertia of the disk? **A)** 0.6 Kg.m² **D)** 12 Kg.m² **B)** 6 Kg.m² **C)** 1.2 Kg.m²

- Which letter on the graph is used for wave amplitude? **A)** A **B)** B **C**) C **D)** D
- Two tuning forks are struck the first produces a sound with a frequency of 285 Hz with a wavelength of 1.2 m and the second fork produces a sound a frequency of 570 Hz what is the wavelength of sound produced by the second fork? (If the two sounds are in the air) **A)** 2.4 m **B)** 0.6 m **C)** 0.3 m
- A pendulum bob is made with a ball filled with water. if a hole in the ball allowed water to slowly leak out which of the following is true: A) The frequency pendulum will increase C) The period pendulum does not change
- Two waves have the same wave length and amplitude interfere constructively if the amplitude of the resultant wave is 38 cm what is the amplitude of each wave? A) 16 cm

17. ωC = B) $\frac{1}{r}$ A) X_C

- **18.** A simple pendulum is moving with simple harmonic motion disregarding friction and air resistance which of the following remains constant for the bob pendulum along the oscillating motion? A) gravitational potential energy
- **19.** Which of the following is true for (audible waves, Infrasonic waves and Ultrasonic waves) in the same medium?

A) $\lambda_{\text{audiable}} < \lambda_{\text{ultrasonic}}$ **C**) $\lambda_{\text{audiable}} = \lambda_{\text{ultrasonic}}$

- 20. A Formula One " race car's " moves with respect to observer if the observer hears the sound of its engine with a 20% reduction of its original frequency, which of the following is correct? A) The observer and car are at rest with respect to each other B) The observer is moving toward car **C)** The car is moving toward observer
- **21.** Which figure indicate that the speed of the plane attains the speed of sound?

A) 1	B) 2
C) 3	D) (1 and 3

A)

B)

C) D)

1	
((
(
- 1	1

- **22.** If the longest wavelength of standing wave of pipe open at both ends is 4.5 m what will be the longest wavelength of that pipe when one end is closed? **A)** 9 m **B)** 4.25 m **C)** 18 m
- **23.** A baseball coach shouts loudly at an umpire standing 5 m away. if the sound power produced by the coach is $\pi \times 10^{-3}$ W, what is the decibel level of the sound when it reaches the umpire? **C)** 40 dB **A)** 0 dB **B)** 30 dB
- **24.** Suppose that q_1 , q_2 , q_3 , q_4 four charges, each is moving in a circular path in a magnetic field, as in the figures whi

ich of them is positive charges?	\vec{B} into the page	
q_1 and q_4	$\vec{v} \times \vec{v} \times \vec{v}$	
q_2 and q_4	$\mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}$	
q_1 and q_3	F_{magnetic}	
q_2 and q_3	× × × × ×	•

D) 12 m

B) The frequency does not change D) both (B and C) are correct

B) 19 cm **C)** 8 cm **D)** 18 cm

C) 2πf

D) $\frac{2\pi f}{c}$

B) kinetic energy C) restoring force D) total mechanical energy

B) $f_{\text{audiable}} < f_{Infrasonic}$ **D**) $f_{\text{audiable}} > f_{\text{Infrasonic}}$

D) The car is moving away from observer

D) 2.125 m

D) 70 dB

25.	An electric current travers a magnitude of the magnetic A) 10 A B)	a one loop circular coil o c field at the center of th 20 A (f diameter 50 cm. Cal le coil is $4\pi imes 10^{-5}$ 7 C) 50 A	culate the inten Γ [μ _o =4π × 10 ⁻⁷ D) 30 A	sity of the current if the T.m/A]
26.	$\frac{N \cdot s}{C \cdot m} = \dots$	A) T	B) V	C) H	D) Wb
27.	A straight segment of wire magnetic field of 0.6 T, wh A) 0.075 N	has a length of 25 cm an nat is the magnitude of th B) 7.5N	nd carries a current of he magnetic force on C) 0.75 N	5 A, If the wire this segment of	is perpendicular to a the wire? D) 75 N
28.	Ameasure vo A) Motor	ery low current of orders B) Transformer	s (mA) or (μA) C) Galvanometer		D) Loudspeaker
29.	Which of the following equations solenoid? A) $\mathbf{B} = \frac{\mu \mathbf{N} \mathbf{I}}{2}$	ations used to measure $\frac{1}{2}$	the strength of magne	etic field due to a	a direct current on axis of D) $\mathbf{B} = \frac{\mu \mathbf{N} \mathbf{I}}{\mathbf{I}}$
30.	A) $D = \frac{1}{r}$ In the corresponding figure ratio of the transformer, a A) $\left(\frac{1}{30}\right)$ step -up transfor C) $\left(\frac{1}{30}\right)$ step - down trans	calculate the conversion and what type of transfor mer B) $\left(\frac{30}{1}\right)$ step - sformer D) $\left(\frac{30}{1}\right)$ step -	n mer is it? up transformer V_1 down transformer	Soft iron core = 120 V	$V_{1} N_{2} = \frac{1}{2}$ $R V_{2} = 3600 \text{ V}$ L Secondary (output)
31.	A power station sends pow conducting wires 50 Kw?	er to a city. If the transfe A) 1 MW B)	er efficiency is 0.95 wl) 5 MW C) 5	hat is the power KW	sent if power lost in D) 1 KW
32.	Lenz's law determines whice A) magnitude of induced of C) direction of an induced	ch of the following: current current	B) magnitude of inD) all answers are	nduced (ɛ) e correct	-
33.	The symbol (M) in this eq	uation $\left[\epsilon_2 = -M \left(\frac{\Delta I}{\Delta t}\right)\right]$] is called:		
	A) MassC) Magnetic permeability	of the medium	B) Coefficient of nD) Constant of uni	nutual induction versal gravitatio	n
34.	A generator coil has 40 turn 0.029 T. The loop's axis o is 120 V, what is the frequ	ns and an area of 0.3 m [;] f rotation is perpendicula iency? A) 100 Hz	² is rotating in uniform ar to a uniform magne B) 55 Hz	magnetic field etic field, the ma C) 314 Hz	of strength ximum emf induced D) 628 Hz
35.	A generator with a maximu through the resistor. A) 1.78 A	m output emf of 205 V is B) 1.26 A	s connected to 115 Ω C) 0.707 A	resistor. Calcul D) 145 A	ate the rms current
36.	AC circuit made up of resis phase difference between A) 90°	tor, a self-inductor, and current and total potent B) 45 °	capacitor all are conn tial difference if the ci C) 0°	ected in series, rcuit to resonate D) 180 °	what is the angle of es?
37.	A 0.75 kg mass attached to A) 24.52 N/m	a vertical spring stretch B) 2666 N/m	nes the spring 0.3 m V C) 1990 N/m	What is the sprin D) 2700 N/	ng constant? m
38.	Which of the following is no A) magnet	t a component of a DC B) two brushes	electric generator? C) Commutator	D) two slip	rings
39.	A coil of self-inductance L = 20 V. what is the self imper A) 0	= 50 mH is traversed by edance (X _L) of coil? B) 10 Ω	a current of intensity C) 20 Ω	2A under a dire D) 40 Ω	ct potential difference of

40. Light falls on two slit	is spaced 0.33 mm apart. If the	angle
is 0.055° what is t	he wavelength of the light?	
A) 7.5 × 10⁻ m	B) 3.52 × 10 ⁻⁷ m	C)

- 41. If a double- slit experiment were performed under-water affected? Why? A) θ would decrease because λ is B) θ would increase because λ is s
 - **C)** θ would increase because λ is lo
 - **D**) θ would decrease because λ is
- 42. Which of the following determines the wavelength of the A) The composition of the active medium
 C) partially reflecting mirror
 D) (
- 43. If the distance between two lines in diffraction grating is 2 diffraction grating. A) 5000 lines/cm B) 500 lines
- **44.** Light of frequency of 1 x 10^{15} Hz illuminates a sodium su
maximum kinetic energy of 1.78 eV. Find the threshold
A) 4.5×10^{14} Hz**B**) 3.5×10^{14} Hz**C**) 4.5×10^{14} Hz
- 45. Which of the following summarizes Rutherford's model of A) Atoms are hard, uniform, indestructible spheres.
 B) Electrons are embedded in a sphere of positive charges with the product of the sphere of the
 - C) Electrons orbit the nucleus in the same way that plan
 - D) Electrons exist only at discrete energy levels
- **46.** A photon in a laboratory experiment has an energy of photon?($h = 6.63 \times 10^{-34}$ J.s) **A)** 1.2×10^{14} Hz **B)** 1.5×10^{14} Hz **C)**
- 47. The (emitter- base) junction of transistor isbiaseA) forwardB) reverseC) f
- **48.** (An increase in the wavelength of the photon scattered by photon) It's called:
 - A) Ultraviolet catastrophe B) Compton Shift C)
- 49. The p-n junction is the contact between a p-type semicor (Ddepletion region) from the movement of charge carrier

50. Which of the following is likely to be able to move and corA) an electron in the innermost shell of a copper atomC) an electron in the conduction band of the semiconduction

e between the first dark fringe	e and the central maximum
6.3 × 10⁻ ⁷ m D) 5.66 ×	< 10 ⁻⁹ m
how would the observed inter longer in water compared to shorter in water compared to onger in water compared to shorter in water compared to	erference (light) pattern be the air the air the air the air
light produced by the laser? fully reflecting mirror (B and C) are correct	
2 µm Calculate the number of s/cm C) 50000 lines/cm	f lines per centimeter on this D) 500000 lines/cm
frequency for this metal? () 5.7×10^{14} Hz	trons are found to have a $n = 6.63 \times 10^{-34} \text{ J. s}$ D) $2.5 \times 10^{14} \text{ Hz}$
of the atom?	
ge. nets orbit the sun.	
5 eV. what is the frequency	y of this
1.2 × 10 ¹⁵ Hz	D) 2.5 × 10 ¹⁴ Hz
ed: forward and reverse	D) All answers are correct
by an electron relative to the	wavelength of the incident
Doppler effect	D) Black body radiation
nductor and an n- type semic	conductor, generates a
ers across the p-n junction. V Depletion_region	Vhich of the following is P n Depletion region
onduct electricity? B) a valence electron ictor germanium D) Both (E	in a copper atom in a wire 3) and (C) are correct