
Kurdistan Region-Iraq In the Name of Allah Subject : Physic Fingerprint High Committee of General Examinations هوهلامی نموونه یی المالة مالة مالة مالة مالة مالة مالة مال	 13. A mass is attached to a spring and moves with simple harmon the following is zero at maximum displacement? A) electic force apring B) velocity
General Examinations for the Preparatory Schools The Academic Year (2023 – 2024) 1 st Attempt Attempt Grade 12 th) Time: 3:30 hours	 A) elastic force spring B) velocity C) acceleration A pendulum bob hangs from a string and moves with simple the period of the pendulum? A) The length of the pendulum?
 Choose the right answers for the following questions (two marks for each question) 1. How many revolutions (rev) equal 270°? A) 2 rev B) 1.3 rev C) 0.75 rev D) 1 rev 2. A remote-controlled car's wheel accelerates at 22.4 rad/s². If the wheel begins with an angular speed of 10.8 rad/s, what is the wheel's angular speed after exactly three full turns? A) 13 rad/s B) 31 rad/s C) 36 rad/s D) 63 rad/s 	 the period of the pendulum? A) The length of the string C C) The free-fall acceleration at the free-fall acceleration at the direction of the current in the resistor R when the magnet is A) from left to right B) from right to le C) in two opposite directions
 3. A bicyclist rides along a circular track. If the bicyclist travels around exactly half the track in 20 s, what is his average angular speed? A) 0.314 rad/s B) 0.61 rad/s C) 0.157 rad/s D) 31 rad/s 	 16. Lawand dips his finger into a pan of water twice each second successive crests is 0.15 m. Determine the speed of these
4. Calculate the unknown value in the corresponding table: A) 1.294 rad/s \mathbf{v}_t $\boldsymbol{\omega}$ \mathbf{r} b) 2.2 rad/s c) 29 rad/s b) 15 rad/s $\mathbf{0.75 m/s}$ $\mathbf{?}$ $\mathbf{0.05 m}$	A) 0.15 m/s B) 0.3 m/s C) 0.4 17. If the wavelength of standing wave on a string is 90 cm. What
 5. The distance between center two billiard balls of same masses is 0.3 m, if the magnitude of the gravitational force between them is 9.05 × 10⁻¹¹ N what is the mass of one of those balls? [G = 6.673 × 10⁻¹¹ N. m² / kg²] A) 0.8 kg B) 0.35 kg C) 0.45 kg D) 0.75 kg 	string? A) 22.25 cm B) 90 cm C) 180 18. A wave with an amplitude of 0.75 m has the same wave leng
 A) 0.8 kg B) 0.35 kg C) 0.45 kg D) 0.75 kg 6. Because of Earth's rotation: A) the weight of the body at the equator is less than the weight of the body at the poles. 	two waves interfere. What is the amplitude of the resultant w A) 0.22 m B) 0.53 m C) 0.7
B) the weight of the body at the equator is greater than the weight of the body at the poles.C) the weight of the body at the equator is equal to the weight of the body at the poles.D) the mass of the body at the equator is less than the mass of the body at the poles.	 19. How many nodes and antinodes are in the fifth harmonic (f₂ A) (five nodes and five antinodes) B) (fo C) (three nodes and three antinodes) D) (for
 7. Which rotational quantity is equivalent to force in transitional motion? A) rotational kinetic energy (<i>KE_{rot}</i>) B) angular momentum (<i>L</i>) C) moment of inertia (<i>I</i>) D) torque (τ) 	 20. The speed of sound depends on the temperature of the media. A) Solid B) Gas C) Lice
 8. When the ice skater brings his hands and feet closer to his body, When the net external torque acting on him is zero. Which of the following is true for [his moment of inertia (I), his angular speed (ω), his angular momentum (L)] A) (I) decrease, (ω) increase, (L) constant B) (I) increase, (ω) decrease, (L) increase C) (I) decrease, (ω) increase, (L) increase D) (I) increase, (ω) increase, (L) constant 	 21. A fire engine is moving at 50 m/s and sounding its horn of from moving at 35 m/s and in the same direction, what is the free (speed of sound in air 345 m/s)? A) 1576 Hz B)1932 Hz C) 10
 9. A 700 N window washer is standing on a uniform scaffold supported by a vertical rope at each end. The scaffold weighs 200 N and is 3 m long. What is the force in the rope that is nearest to the window washer if he stands1 m from one end? A) 333 N B) 900 N C) 500 N D) 567 N 	22. If the intensity of a sound is $1 \frac{W}{m^2}$ what is the relative intensit A) 60 dB B) 0 dB C) 12
	23. A violin string that is 50 cm long has a fundamental frequence string? A) 220 m/s B) 880 m/s
10. The corresponding figure represents the angle of phase difference between the current intensity and the alternating potential difference for which of the following? A) Pure resistance circuit C) A capacitor circuit D) circuit in resonance	24. We can express the unit of the magnetic field (Tesla T) in where A) $\frac{N}{A \cdot m}$ B) $\frac{N^2}{A \cdot m}$ C) $\frac{N}{A}$
11. A potter's wheel, that has the shape of a disk of radius 0.5 m and mass 80 kg is freely rotating at 4 rad/s. The potter can stop the wheel in 5 s by pressing a wet rag against the rim, how much torque does the potter apply to	25. A direct current of 10 A passes thought a solenoid, if the ma $\frac{\pi}{40}$ T calculate the number of turns per unit length: ($\mu = 4\pi$
the wheel $\left(I = \frac{1}{2} mr^2\right)$? A) -11 N.m B) -0.86 N.m C) -1.9 N.m D) -8 N.m	A) $2500 \frac{\text{turn}}{\text{m}}$ B) $4250 \frac{\text{turn}}{\text{m}}$ C) 62
 12. A disk of mass 0.5 kg and radius 0.1 m rolls without slipping on an inclined plane. What is the total kinetic energy of the disk at the instant when the instantaneous speed of its center is 2 m/s : A) 0.375 J B) 0.25 J C) 3.75 J D) 1.5 J 	 26. Suppose an electron is chasing a proton to the north when s What would happen to the particles? A) proton would go east, and the electron would go west. C) proton and electron would go to west. D) no model
0001 100	C) proton and electron would go to west. D) no

imple harmonic motion on a frictionless horizontal surface. Which of		
C) acceleration D) elastic potential energy stored in spring		
with simple harmonic motion. Which of the following does not affect N: 00001 B) The mass of the pendulum bob leration at the pendulum's location D) All answers are correct		
is shown in figure. What is the magnet is moved to the left: m right to left Answers are wrong N		
each second, producing waves if the distance between two ed of these water waves. C) 0.45 m/s D) 0.725 m/s		
90 cm. What is the distance between two adjacent nodes on that C) 180 cm D) 45 cm		
he wave length as a second wave with an amplitude of 0.53 m. The e resultant wave if the interference is constructive? C) 0.75 m D) 1.28 m		
 harmonic (f₅) in pipe closed at one end? B) (four nodes and four antinodes) D) (four nodes and five antinodes) 		
e of the medium, this dependence is more noticeable in: C) Liquid D) All answers are correct		
ts horn of frequency 1500 Hz. A Van in front of the fire engine is at is the frequency that the driver of Van hear		
C) 1048 Hz D) 1177 Hz		
ative intensity of this sound?		
C) 120 dB D) 40 dB		
tal frequency of 440 Hz. What is the speed of the waves on this C) 440 m/s D) 110 m/s		
esla T) in which of the following:		
C) $\frac{N}{A \cdot m^2}$ D) $\frac{N^2}{A \cdot m^2}$		
id, if the magnitude of magnetic field in the middle of the solenoid is th: ($\mu = 4\pi \times 10^{-7} T \cdot m/A$)		
C) 6250 $\frac{\text{turn}}{\text{m}}$ D) 5500 $\frac{\text{turn}}{\text{m}}$		
orth when suddenly a magnetic field pointing the south is applied.		
go west. B) proton would go west, and the electron would go east. D) no magnetic force will be exerted on proton and electron.		

 27. Which of the following correctly describe the direction of magnetic field around straight wire when a direct current pass through it? A B B B B B B B B B B B B B B B B B B B	 39. Two coherent light waves of the same wavelength they is wavelength of the resultant wave is: A) zero B) t C) twice wavelength of either of these waves D) let 40. If the angle of phase difference between two coherent waves is: A) ¹/₃ λ B) 4λ
A, while the ammeter measures currents between (0 and 1 A). What is the resistance of the shunt that should be connected in parallel with the ammeter in order to do this job? A) 56 Ω B) 0.9 Ω C) 0.56 Ω D) 1.2 Ω	 41. Which of the following is not an essential component of A) a partially transparent mirror B) a fully reflecting a 42. Monochromatic light from a laser source (helium-neon)
29. A wire 36 m long carries a current of 22 A from east to west. If the magnetic force on the wire due to earth's magnetic field downward (toward Earth) and has a magnetic of 4×10 ⁻² N, find the magnitude of magnetic field at	surface of a diffraction grating that contains 150 500 line order bright fringe? A) 0.125° B) 10.98°
this location? A) 5×10^{-5} T B) 5×10^{-3} T C) 5×10^{-6} T D) 5×10^{-2} T 30. A single circular loop with a radius of 22 cm is placed in a uniform external magnetic field with a strength of 0.5 T so	 43. Find the angular acceleration of a ball swung at a constant A) 1 rad/s² B) 0 rad/s²
 that the plane of the coil is perpendicular to the field. The coil is pulled steadily out of the field in 0.25 s. Find the average induced (ε) during this interval? A) 0.6 V B) 1.2 V C) 0.3 V D) 0.15 V 31. The tendency of a body rotating about a fixed axis to resist a change in rotational motion: 	 44. The arm of a crane at a construction site is 12 m long, a that the maximum load the crane can handle is limited b of the arm. What is the magnitude of the maximum torq can handle is 300 N? A) 1800 N . m B) 31
 A) torque (τ) B) angular momentum (L) C) moment of inertia (I) D) angular acceleration (α) 32. Machine that converts electrical energy to mechanical energy: A) ignition coil in a gasoline engine B) motor C) generator D) transformer 	45. A wave whose particles vibrate perpendicular to the direA) transverse waveB) longitudinal wave
33. Ohm (Ω) equals to: A) $\frac{1}{\text{Hz.F}}$ B) Hz. H C) $\frac{V \cdot s}{A}$ D) (A and B) are correct	46. If a sound seems to be getting louder, which of the followA) speed of soundB) intensity
34. What is the coefficient of self-induction of a pure self-inductor In the circuit shown in the adjacent figure, If the angle of phase difference between the electric current and the total potential difference is zero? A) 6.25×10^{-2} H B) 1.59×10^{-2} H C) 2.2×10^{-2} H D) 2.98×10^{-2} H D) 2.98×10^{-2} H	 47. In the figure Wire 1 carries current I₁ and creates magnetic field B₂. What is the direction of t as a result of B₂? A) to the right of page B) down C) up the page D) to the
35. A generator coil has 150 turns and a cross-sectional area of 0.35 m ² and the magnetic field in which the coil rotates	48. The (Maser) device works In the region of which of the fA) infraredB) Ultraviolet waves
is 8.34×10^{-3} T, if its frequency is 89 Hz which of the following is the equation of instantaneous emf induced (ϵ) of this generator: A) $\epsilon = 245 \sin (559 t)$ B) $\epsilon = 245 \sin (89 t)$ C) $\epsilon = 245 \sin (559 \pi t)$ D) $\epsilon = 78 \sin (78 \pi t)$	49. Which of the following represents Hook's law: A) $\vec{F}_{elastic} = -K\vec{x}$ B) $\vec{F}_{elastic} = \frac{-K^2}{\vec{x}}$
36. A capacitor of capacitance 400 μ F is connected in series to a pure resistor of resistance 10 Ω across an AC source of frequency $\frac{250}{\pi}$ Hz. If the effective value of the potential difference across the capacitor is 18 V, Find the effective potential difference across the pure resistor? A) 32 V B) 42.6 V C) 36 V D) 57 V	50. A wire conducting (a , b) moves at a constant speed (\vec{v} field (\vec{B}) as shown in the figure, which of the following is A) induced (ε) is generated, (a) positive pole, and (b) r
37. An AC source of effective value of 90 V is connected across a parallel combination of resistance of R = 300 Ω , an inductor of impedance of X _L = 600 Ω and a capacitor of impedance of X _C = 200 Ω , Calculate the value of the effective current of the source? A) 212.13 A B) 0.42 A C) 2.1213 A D) 4.2 A	B) induced (ε) is generated, (a) negative pole, and (b) C) induced (ε) is generated, (a) positive pole, and (b) p D) No induced (ε) is generated.
38. What is the ratio of the number of turns of wire on the primary to the number of turns on the secondary in the corresponding transformer? A) $\begin{pmatrix} \frac{1}{20} \end{pmatrix}$ B) $\begin{pmatrix} \frac{20}{1} \end{pmatrix}$ C) $\begin{pmatrix} \frac{24.6}{1} \end{pmatrix}$ D) $\begin{pmatrix} \frac{156}{1} \end{pmatrix}$ D) $\begin{pmatrix} 1$	

