

B. 0.8L **C**. 1.25L **D**. 1.25mL **A**. 1.6x10⁻⁴ 12. When a reaction is endothermic and leads to decrease randomness, the reaction is:-**25.** In this reaction: $NO_2+CO \rightarrow NO+CO_2$, if the rea

D. not determined

- **A**. always spontaneous **B**. spontaneous at high temperature
- **D**. spontaneous at low temperature **C**. never spontaneous **13.** The suitable indicator for titration potassium hydroxide with ethanoic acid is :
- **A**. methyl red (pH= 4.4-6.2) B. methyl orange(pH= 3.1-4.4)
- **C**. phenolphthalein(pH= 8.0-10.0)
- **14.** 0.25kJ of energy is added to 10g of a material, the temperature changed 50K, the specific heat **A**. 0.0005J/(mol.K) **B**. 0.5J/(mol.K) **C**. 0.5J/(g.K) is equal:-**D**. 0.5kJ/(g.K)

C. the reaction H_3O^+ ions with OH^- ions to produce water

C. 8

B. 4

A. 2

		-	•		ut it reacts weak	dy with nit	roger	n, un	der the		
same condi			ecting the r	rate of r							
A. surface area of reactants					B . nature of reactants and chemical bonds						
C. concentration of reactants					D . presence of catalysts						
6. A reaction	has ∆G=	-834.3kJ/	$^{\prime}$ mol and ΔS	5= -38.5	J/(mol.K) <i>,</i> ∆H for	the reaction	on at	448K	is equal:	•	
A . 851.5kJ/	mol	B 851	.5kJ/mol	(817kJ/mol		C) . 817	′kJ/mol		
7. In this rea	tion: NH	₃(g) +H₂O	(<i>l</i>) ← NH4	r⁺(aq)+O	H⁻(aq), which of	the follow	ing is	corre	ect?		
A. water is a Bronsted-Lowry acid B. H ₂ O and H ₃ O ⁺ are conjugate acid-base pair											
C . the rever	se reactio	on is more	e favorable	D.	both (A and C)						
8. Is a poly a	omic ion	, the oxid	lation numl	ber of si	ulfur is +4 :-						
A . SO ₄ ²⁻ B . SO ₂			C	C. SO ₃ ²⁻	D.	both	n(B and C)				
9. In this reaction: $2Fe_2O_3(s) + 3C(s) + 467.9kJ \rightarrow 4Fe(s)+3CO_2(g)$, calculate the standard											
enthalpy of formation for Fe_2O_3 , if the standard enthalpy of formation for CO_2 is -393.5kJ/mol											
A1648.4kJ/mol B 824.2kJ/mol C712.6kJ/mol						D 356.3kJ/mol					
0. By using a	catalyst i	in a reacti	ion the forv	ward ac	tivation energy is	s decrease	d by a	an am	iount,		
which of the following is correct?											
A. the change of enthalpy decreases by the same value											
B. the activated complex energy decreases by the same value											
C. the reverse activation energy decreases by the same value											
D. both(B a	nd C) are	correct									
1. Which of t	he follow	ving comp	ounds is a	structu	ral isomers of pe	ntane acco	ording	g IUP/	AC syster	n?	
A. 2-methyl pentane			E	B . 1-methyl butane							
C . 2,2-dimethyl propane			0	D. both (B and C)							
2. The anode	electrod	le in a car	battery is:	-							
A . Pb	B . Pb	SO4		C . PbO	O ₂ D . H ₂ SO ₄						
3. Is a proces	s deposit	ts metal o	onto a surfa	ce:-							
A. dissociation B . electro plating				C. disproportionation D. oxidation							
4. The follow	ing react	ion: A + 2	$B \longrightarrow C$, is	found	o occur in the				1		
one - step mechanism, by using the data in the a the rate of the reaction in the second experimer					djacent table,	Experiment	[A]	[B]	Rate M/s		
					t is :	1	0.2	0.2	2.0×10 ⁻⁴		
A . 1.6x10 ⁻⁴	B . 1.	6x10 ⁻³	C . 4x1	.0-4	D . 8x10 ⁻⁴	2	0.4	0.4	?		
5. In this rea	tion: NO	0₂+CO•	NO+CO2, if	the rea	ction of fast step	o is: NO₃+C	:0—→	NO ₂ -	⊦CO₂, by		
what factor does the rate increase if [CO] doubled?											

D. the rate of reaction does not changed 26. Neutralization is: A. amphoteric acts of matter

B. the reaction H_3O^+ ions with OH^- ions to produce salt

D. the reaction hydrogen gas and oxygen gas to produce water

27. By adding KCN	N to HCN solution:- A. [C	-	B . pH decreases	40. In a reversible reaction, when the activation energy			
		nization of HCN decreases	D . both (A and C)	energy for endothermic change is co	-		
	solution of NH ₄ CH ₃ COO is		strong acid and strong base	A. the activation energy of endother	-		
	do not hydrolysis	B . the activation energy of exotherm					
C . both its ions	are hydrolyse equally	D . both(A and B)		C . the activation energy of exothermi	ic change an		
		II \rightarrow H ₂ +I ₂ , at equilibrium it		D . none of them	A / / 0 I		
	-	ant for the reverse reaction i	-	41. In which of the following reaction the ΔH_f^0 value			
A . 0.25	B . 4	C . 2	D . 0.5	A . $N_2+2O_2 \rightarrow 2NO_2$	В		
30. When 25.0 mL	L of 5x10 ⁻⁵ M Pb(NO ₃) ₂ is	combined with 25.0 mL of 4x	$^{10^{-5}}M$ Na ₂ SO ₄ , which of the	C . $SO_3+H_2O\longrightarrow H_2SO_4$			
following is net	ionic equation through	K _{sp} calculation (K _{sp} for PbSO ₄ :	=1.6x10 ⁻⁸)	42. This reaction: $Cl_2(g)+2Fe^{2+}(aq) \rightarrow 2$			
	₄²-(aq) →PbSO₄(s)	B . Pb ²⁺ (aq)+2N	IO₃⁻(aq) →Pb(NO₃)₂(s)	A. balanced for charge and mass B. balar			
C . PbSO ₄ (s) \longrightarrow	Pb ²⁺ (aq)+SO ₄ ²⁻ (aq)	D . none of the	m	C. not balanced for charge and mass			
31. Br ₂ is oxidizing	g agent, displacesi	ons.		43. The following reaction: 2Pb(NO ₃) ₂ —			
A . fluoride	B . chloride	C . iodide	D . chloride and iodide	A. redox reaction, the lead is reduced			
32. Is an ion that o	does not act as a Bronste	ed-Lowry acid:-		C . redox reaction, the nitrogen is red			
A . NH4 ⁺	B . HCO ₃ ⁻	C . HCOO ⁻	D . all of them	44. The hybridization type of cycloalkar	ne is:-		
33. In the followin	ng gaseous equilibrium s	ystem: 2SO₂+O₂	energy , which of the	A . SP^2 B . SP^3	(
following chang	ges are increase amount	of SO₃?		45. Which of the following compound r	nay be alkyn		
A. increased ter	mperature	B. decreased syster	n volume	A . C ₄ H ₈ B . C ₇ H ₁₆			
C . addition Heli	um gas	D . all of them		46. One of the following is a type of sub	ostitution rea		
34. Which of the f	following is a monomer o	of natural rubber?		A. CH_3 - Cl + $Cl_2 \xrightarrow{light} CH_2Cl_2$ + HCl_3	В		
A . isoprene	B. neoprene	C. hexanediamine	D. 1,3-butadiene	C . CH ₃ -CH ₂ -OH $\xrightarrow{H_2SO_4}$ CH ₂ =CH ₂ +H ₂ O	D		
35. The following	half-reaction: (O ₂ (g)+4e	⁻ +2H ₂ O(<i>l</i>) → 4OH ⁻ (aq)) occ	urs at cathode of:-	47. The molecular formula for 3-ethyl-4	-methylhexa		
A. fuel cell	B. corrosion of iron proc	cess C . electrolysis of wat	er cell D . both(A and B)	A . C_8H_{18} B . C_9H_{20} C .	C_9H_{18}		
36. It is used in bio	ology laboratories as a p	reservative for dead animals	:				
A. formaldehyd	e B . benzoic a	acid C . phosphoric	acid D . ester	48. The name of this compound: CH ₃ -Cl	H ₂ -NH-CH ₃ , is		
37. The boiling po	oint of ethanol is lower th	A. methyl ethyl amine	В				
A. dimethyl eth	ner B . propane	C . methanol	D . 1,2-ethanediol	C. ethyl methyl amine	D		
38. An allotrope o	of carbon is a soft, black a	and conductor of electricity:-		49. In which of the following containers	s, can a solut		
A. diamond B . graphite			D . carbon-14	reduction potential for each Sn ²⁺ ,Zn ²⁺	⁺,Al³+,Cu²+,Ni		
39. When a zinc st	trip is in contact with a c	opper (II) sulfate solution:		to (-0.14, -0.76, -1.66, 0.34,-0.23) vo	olt? A . Ni		
A. zinc is oxidize	-	B. Copper is precipit	ate in the solution	50. The overall electrochemical reaction	n that occurs		
C . energy is rele	eased as heat	D . all of them		cell:MnO ₂ /Mn ²⁺ and Cr ³⁺ /Cr is: $(E^0$	reduce Cr ³⁺ /Cr		
				A . $3MnO_2+12H^++2Cr\longrightarrow 3Mn^{2+}+6H_2O$			
				C . MnO ₂ +4H ⁺ +Cr \rightarrow Mn ²⁺ +2H ₂ O+Cr ³⁺	+1e ⁻ D		

```
energy for exothermic change with activation
ich of the following is correct?
 is greater by the value of \Delta H
is greater by the value of \Delta H
and endothermic change is equal
lue of product is equal to \Delta H^0 of reaction?
B. CO+ \frac{1}{2} O<sub>2</sub> \rightarrow CO<sub>2</sub>
D. <sup>1</sup>⁄<sub>2</sub> H<sub>2</sub>+ <sup>1</sup>⁄<sub>2</sub> Cl<sub>2</sub>→HCl
2Cl<sup>-</sup>(aq), is:-
anced for charge but not balanced for mass
anced for mass but not balanced for charge
NO_2+O_2, is:
         B. not redox reaction
         D. disproportionation
                                      D. SP and SP^2
 C. SP
yne?
         C. C<sub>6</sub>H<sub>10</sub>
                                              D. C<sub>7</sub>H<sub>8</sub>
eaction:
B. CH_2=CH_2+CI_2\longrightarrow CH_2CI-CH_2CI
D. CH\equivCH+2HCl\rightarrowCH<sub>2</sub>Cl-CH<sub>2</sub>Cl
exane is:
                        CH_2-CH_3
         D. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>
                           ĊH₃
 is:
B. ethyl methyl ammonia
D. dimethyl amine
lution of Sn(NO<sub>3</sub>)<sub>2</sub> be stored? if the standard
Ni<sup>2+</sup> respectively is equal
               B. Cu
                                       C. Zn
                                                                D. Al
urs spontaneously for a cell consisting of the half-
Cr= - 0.74V, E<sup>0</sup><sub>reduce</sub> MnO<sub>2</sub>/Mn<sup>2+</sup>=1.22V)
B. 3MnO<sub>2</sub>+6H<sup>+</sup>+2Cr→3Mn<sup>2+</sup>+3H<sub>2</sub>O+2Cr<sup>3+</sup>
D. 2Cr<sup>3+</sup>+6H<sub>2</sub>O+3Mn<sup>2+</sup>→3MnO<sub>2</sub>+12H<sup>+</sup>+2Cr
```