KURDISTAN REGION GOVERNMENT -IRAQ IN THE NAME OF ALLAH Subject: Chemistry MINISTRY OF EDUCATION Time:3.5 hours HIGH COMMITTEE OF THE GENERAL EXAMINATION Image: Committee of the general examination	14. In a titration,26.9 mL of 3.4x10⁻³M Ba(OH)₂ neutralized 16.6 mL of HCl solution. What is the molarity of acid? A. 1.1x10⁻² B. 5.5x10⁻³ C. 2.75x10⁻³ D. 1.1x10⁻³				
General Examinations for Preparatory Stage Study year (2023-2024) (Grade twelve scientific)	 15. This reaction:2NO(g)+O₂(g) →2NO₂(g)+114.2kJ, is: A. always spontaneous B. spontaneous at low temperatures, but not at high temperatures D. spontaneous at high temperatures, but not at low temperatures 				
Choose the correct answer (two marks for each question)	16. If 3.563 kJ of energy added to 55g sample of aluminium, how much temperature in kelvin will				
1. How many moles of anion are produced by dissolving 0.15mol of aluminium acetate? A. 0.60mol B. 0.15mol C. 0.45mol D. 0.30mol	rise of the sample? (C_p =0.897J/(g.K)) C. 7.22K D. 65K A. 72.2K B. 4.0K C. 7.22K D. 65K				
 2. A solution consists of 3.13g of a nonelectrolyte solute in 38g of water, the boiling point of the solution is higher than the boiling point of pure water by 1°C, the molar mass of solute is:-(K_b=0.51°C/m) A. 101g/mol B.1.96g/mol C. 42g/mol D. 237g/mol 	 17. Calculate the standard enthalpy of formation (ΔH_f⁰) of CH₄, if the standard enthalpy of combustion for each of H₂, C and CH₄ is equal (-286,-394,-891) kJ/mol respectively. A75 kJ/mol B713 kJ/mol C. 713 kJ/mol D. 75 kJ/mol 				
3. A compound that ionizes and contains the highest concentration of ions is:- A. 0.5M HCl B. 0.3M K ₃ PO ₄ C. 0.5M NH ₃ D. 0.3M H ₂ SO ₄	18. In a reaction at 25°C , ΔG°=91kJ/mol, ΔS°=0.2855kJ/(mol.K) the value of ΔH° is equal to:- A 176 kJ/mol. B . 98.2 kJ/mol C . 176 kJ/mol D 98.2 kJ/mol				
4. Which of the following has the higher vapour-pressure? A. 0.3m sucrose B. 0.1m glucose C. 0.2m sucrose D. pure water	 19. If the standard enthalpy of formation for each of SO₂, C₂H₂, HI and CO₂ is equal (-296.8,+226.7,+26.5,-394) kJ/mol respectively, which of the following is more stable? A CO₂ B C₂H₂ C HI D SO₂ 				
 5. Which of the following pairs of an aqueous solutions produces barium sulfate precipitate when combined? A. Ba(NO₃)₂,K₂SO₄ B. BaCl₂,Na₂SO₄ C. BaCl₂,K₂S D. both(A and B) 	20. In a reaction the value of $E_a=126$ kJ/mol, $E_a^-=86$ kJ/mol and the product energy level is 40 kJ/mol, then the reactant energy level is equal to:				
 6. A volatile, unstable acid when is pure, it is used in making explosives is:- A. H₂SO₄ B. HNO₃ C. HNO₂ D. H₃PO₄ 	A. zero B. 80 kJ/mol C40 kJ/mol D. 212 kJ/mol 31 The minimum energy required for an effective collision is:				
 7. In the reaction NH₃ with Ag⁺ ions, ammonia acts as: A. Lewis base B. Bronsted-Lowry base C. Arrhenius base D. all of them 	 A. free energy B. activation energy C. kinetic energy D. enthalpy of reaction 22. In the following reaction: A+2B → C ,the overall order of reaction is 3,doubling [B] quadruples the rate of reaction, which of the following is correct? A. the reaction is occur in the one-step mechanism C. R=k[A][B]² B. R=k[A]²[B] D. both (A and C) are correct 				
 8. The anion of the salt of a weak acid and strong base: A. has a great tendency to donate a proton C. is a strong conjugate acid B. has a great tendency to accept a proton D. is a weak conjugate base 					
9. Which of the following is correct for binary acid nomenclature?	23. The following data relate to the reaction: $2H_2O_2 \rightarrow 2H_2O+O_2$, which of the following is correct?				
A. the name of a binary acid begins with the prefix hydro- B. the root of the name of the second element follows this prefix	A. $R_1 = R_2$ B. $R_1 > R_2$ Experiment [H ₂ O ₂] Temperature °C Rate				
C. the name then ends with the suffix-icD. all of them are correct	C. $R_2 > R_1$ D. $R_1 = 2R_2$ D. $R_1 = 2R_2$				
10. Which of the following chemical equation is incorrect? A. $Sr(OH)_2 + H_2CO_3 \longrightarrow SrCO_3 + 2H_2O$ B. $4Ba(s) + H_2SO_4(aq) \longrightarrow H_2S + 4BaO$ C. $2NaHCO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2O + 2CO_2$ D. $HCIO_4 + NaOH \longrightarrow NaCIO_4 + H_2O$	24. In the following reaction: $2A \longrightarrow C + E$, the value of specific rate constant is 0.02 s^{-1} , when the rate of reaction is $5x10^{-6}\text{M.s}^{-1}$, the reactant concentrations is equal to:- A. $4x10^{-5}\text{M}$ B. $5x10^{-4}\text{M}$ C. $2.5x10^{-4}\text{M}$ D. $1.58x10^{-2}\text{M}$				
11. The pH of pure water: A. it is equal to 7 at all temperatures C. less than 7 at 50°C B. it is equal to 7 at 25°C D. both(B and C)	 25. A chemical reaction is in equilibrium when: A. forward and reverse reactions have ceased B. forward and reverse reaction rates are equal C. the equilibrium constant equals are (1) D. no reactants remain 				
 12. Which of the following is correct for this indicator: HIn ↔ H⁺+In⁻, in the basic solution: A. the ionization of indicator molecules increases B. the concentration of In⁻ ions decreases C. the ionization of indicator molecules decreases D. the equilibrium shifts to the left direction 	26. Which of the following is correct in an aqueous solution of 0.5M Na ₂ CO ₃ ? A . Na ⁺ ions hydrolyze B . $[H_3O^+] > [OH^-]$ C . $[OH^-] > [H_3O^+]$ D . both (A and C) are correct				
13. If the pH of a solution is 3, then: A . $[OH^-]=1x10^{-3}M$, acidic B . $[OH^-]=1x10^{-11}M$, basic C . $[OH^-]=1x10^{-11}M$, acidic D . $[H_3O^+]=1x10^{-3}M$, basic	 27. By adding hydrogen chloride gas to saturated solution of sodium chloride, at new equilibrium:- A. [Cl⁻] decreases B. [Na⁺] increases C. [Na⁺] decreases D. both (A and C) 				
001 100					

28. The number of moles Hg ²⁺ in 1000L of A . 1.26x10 ⁻²³ B . 5.4x10 ⁻¹	of a saturated solution of HgS is: i C. 1.26x10 ⁻²⁶	f(<i>K_{sp}</i> =1.6x10 ⁻⁵²) D . 8.0	42. Which of the for A . graphite is a f	ollowing is incorrect airy good conducto	ct? or of electricity
29. In the following gaseous equilibrium has no effect on the equilibrium shift?A. changes in concentration	system: 2CO+O ₂ ↔ 2CO ₂ +energ B . adding cataly	y , which of the following st	 B. ethyne is a function C. methylbenzer D. the octane ratio 	ei used in oxyacety ie is a simplest aro ting of a fuel is a m	matic hydrocar matic hydrocar heasure of its bu
C. changes in pressure	hanges in pressure D . changes in temperature		43. Hydrocarbons are classified according to the:		
 30. All of the following situations the reactions go to completion except:- A. formation of a gas in open container C. formation of a slightly ionized product D. formation of a strongly ionized product 		C. carbon isotopes			
		44. The number of hydrogen atoms for (2-methyl-1, A . 6 B . 8 C . 10			
31. The oxidation number of carbon in w A . CH ₄ B . CO	which of the following is -4? C . CO ₂	D . CaCO₃	45. The name of the	ne following compo	ound: (CH ₃ -CF
32. In this reaction: $PbS(S)+4H_2O_2 \longrightarrow Pb$	SO_4 +4H ₂ O, the atoms ofar	e oxidized.	1		CH₃-C
A. lead B. sulfer	C . hydrogen	D . oxygen	A. 2-methyl-3-pi C. 3-ethyl-2-met	opylpentane hylhexane	C
A . N ₂ +3H ₂ \longrightarrow 2NH ₃ C . H ₂ +2Li \longrightarrow 2LiH	 B. H₂+Br₂ → 2HBr D. both (A and B) are correct 	t	46. Which of the for A . HCl,Cl ⁺	ollowing is conjuga B . H ⁺ ,OH	ite pair?
34. In this half-reaction: $ClO_3^- \rightarrow Cl^-$, $Cl:$ A. loses 6 electrons B. gains 6 electrons C. loses 5 electrons D. gains 5 electrons 35. In which of the following the oxidation process has occurred? A. $SO_2+2H_2O \rightarrow S+4OH^-$ B. $[Mn(CN)_6]^{4-} \rightarrow [Mn(CN)_6]^{3-}$ C. $2H^++NO_3^- \rightarrow NO_2+H_2O$ D. none of them			 47. In the following equilibrium reaction: 2A(g) → 2 [C]=0.01M, [B]=0.09M and [A]=0.003M at equilibres of K will be 5, which of the following is correct? A. the value of K is equal to 9 at 35°C C. the reaction is endothermic 		
C . $2n(S)+2OH^{*}(aq)+2e^{-}\rightarrow 2n(OH)_{2}(S)$	D . Zn(OH) ₂ +2e ⁻	\rightarrow 2n(S)+2OH (aq)	49. The molecular A . hexane	B . 2-methylper	mpound ntane C
57. This reaction: Mg+Sn ⁻ \rightarrow , will occur spontaneously as written, which of the following is correct? A. Mg is more easily oxidized than Sn C. E^{o}_{reduce} Mg ²⁺ > E^{o}_{reduce} Sn ²⁺ D. both(A and B) are correct		50. The value of E^{0}_{cell} for this spontaneous electrock 0.34V, then $E^{0}_{reduce} M^{2+}$ is:			
38. The process is occur at cathodA. reductionB. oxidation	le of electroplating cell. C. precipitation D. rec	duction and precipitation	A. zero	B . +0.34V	C 0.34
 39. If a strip of nickel were dipped into a <i>E^o_{reduce}</i>Ni²⁺, Ag⁺ equals (-0.23,+0.80) vol A. Nickel is precipitates B. energy is 	solution of AgNO ₃ , what would b It respectively. released as heat C . Nickel disso	be expected to occur? if lves D . both(B and C)			
40. When an automobile battery is charg	ging: A. energy as heat is convert B. kinetic energy is converte C. electrical energy is conve D. chemical energy is conve	ed to chemical energy ed to chemical energy erted to chemical energy erted to electrical energy			
41. The structural formula and moleculaA. number of the atoms present in a mC. bonding arrangement of the atoms	r formula of a compound are sim nolecule B . type of the atoms D . both (A and B) are	ilar in: present in a molecule e correct			

at aromatic hydrocarbons

is a measure of its burning efficiency and its antiknock properties

B. type of bonding between carbon atoms **D**. mass of the compound

oms for (2-methyl-1,3-butadiene) is equal to:-**C**. 10 **D**. 12

ompound: (CH₃-CH₂-CH₂), according to IUPAC system is: CH₃-CH-CH-CH₂-CH₃

ĊH₃ **B**. 2-methyl-3-ethylhexane **D**. 3-ethyl-2-methylpentane

 \mathbf{C} .NH₄⁺,NH₂⁻

D. none of them

reaction: $2A(g) \leftrightarrow 2B(g)+C(g)$, at $35^{\circ}C$ it is determined that]=0.003M at equilibrium, by cooling the reaction to 10°C, the value

> **B**. the reaction is exothermic **D**. both (A and C) are correct

C. NH₃,NH₄NO₃ **D**. HCN,KCN he compound..... is C_6H_{14} . **C**. 2,2-dimethylbutane **D**. all of them ontaneous electrochemical reaction: $M^{2+}+H_2 \rightarrow M+2H^+$ is

C. -0.34V

D. cannot be determined